LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #11   Report Post  
Old July 5th 15, 04:56 PM posted to rec.radio.amateur.antenna,sci.electronics.design
external usenet poster
 
First recorded activity by RadioBanter: Nov 2012
Posts: 989
Default An antenna question--43 ft vertical

On 7/4/2015 9:43 PM, Jeff Liebermann wrote:
On Sat, 04 Jul 2015 19:33:30 -0400, Jerry Stuckle
wrote:

On 7/4/2015 7:22 PM, Jeff Liebermann wrote:
On Sat, 04 Jul 2015 19:04:01 -0400, Jerry Stuckle
wrote:
Think of it this way, without the math. On the transmitter side of the
network, the match is 1:1, with nothing reflected back to the transmitter.

So you have a signal coming back from the antenna. You have a perfect
matching network, which means nothing is lost in the network. The
feedline is perfect, so there is no loss in it. The only place for the
signal to go is back to the antenna.

Wikipedia says that if the source is matched to the line, any
reflections that come back are absorbed, not reflected back to the
antenna:

https://en.wikipedia.org/wiki/Impedance_matching
"If the source impedance matches the line, reflections
from the load end will be absorbed at the source end.
If the transmission line is not matched at both ends
reflections from the load will be re-reflected at the
source and re-re-reflected at the load end ad infinitum,
losing energy on each transit of the transmission line."


And you believe everything Wikipedia says? ROFLMAO.
But that also explains your ignorance.


Let's see if I understand you correctly. You claim that with a power
amplifier (source) output impedance that is perfectly matched to the
coax cable, but not necessarily the load (antenna), any reflected
power from the load (antenna) is bounced back to the load (antenna) by
the perfectly matched source (power amp). Is that what you're saying?

Yet, when I have a perfectly matched load (antenna), all the power it
is fed is radiated and nothing is reflected. You can't have it both
ways because the reflected power from the load (antenna), becomes the
incident power going towards the source (power amp). Matched and
mismatched loads do NOT act differently depending on the direction of
travel. If you claim were true, then transmitting into a matched
antenna or dummy load would reflect all the power back towards the
transmitter.


I think this is one of those situations where a casual explanation won't
work. You can use a "casual" explanation when the various
qualifications for a simplification apply. But to do that, the
qualifiers have to be fully understood and no one here is showing what
the qualifiers are much less that they are met. So until we get a real
explanation I will stick with what I recall. In the end, to settle this
we may have to use the math.

I'm sure someone in s.e.d could explain this properly. Some of them may
be purely argumentative, but some really know their stuff. I believe
the description of a conjugate match is the mathematical inverse of the
complex impedance of the antenna "viewed" through the feed line, but I
have to admit I don't really know what that implies or if it is even an
accurate description.

--

Rick
 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Vertical Antenna Performance Question N0GW[_2_] Antenna 40 February 20th 08 03:52 AM
Antenna Question: Vertical Whip Vs. Type X Robert11 Scanner 2 June 29th 07 12:49 AM
Question about 20-meter monoband vertical (kinda long - antenna gurus welcome) Zommbee Antenna 8 December 28th 06 12:53 AM
Technical Vertical Antenna Question LiveToBe100.org Shortwave 1 February 26th 06 06:56 AM
Short STACKED Vertical {Tri-Band} BroomStick Antenna [Was: Wire ant question] RHF Shortwave 0 February 23rd 04 12:59 PM


All times are GMT +1. The time now is 10:21 PM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017