Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Ian Jackson wrote:
In message , rickman writes How about we quit with the speculation and come up with some numbers? Here is a simulation of a 50 ohm load with a 50 ohm matched series output impedance and a voltage source of 200 VAC peak. Power into the load is 100 W. http://arius.com/sims/Matched%20Load%20Power.png Same exact circuit with the series impedance of just 1 ohm, power into the load is 385 W. http://arius.com/sims/UnMatched%20Load%20Power.png I'd say that is pretty clear evidence that matched loads are not the way to maximize power transfer when the load impedance is fixed and the output impedance is controllable. Quite simply, if your prime objective is to get maximum power out of a power (energy?) source, the source having an internal resistance is a BAD THING. You don't design the source to have an internal resistance equal to its intended load resistance. No one designs lead-acid batteries that way (do they?), so why RF transmitters? Because RF transmitters deliver high frequency AC to a transmission line. -- Jim Pennino |
#3
![]() |
|||
|
|||
![]()
John S wrote:
On 7/6/2015 11:44 AM, wrote: Ian Jackson wrote: In message , rickman writes How about we quit with the speculation and come up with some numbers? Here is a simulation of a 50 ohm load with a 50 ohm matched series output impedance and a voltage source of 200 VAC peak. Power into the load is 100 W. http://arius.com/sims/Matched%20Load%20Power.png Same exact circuit with the series impedance of just 1 ohm, power into the load is 385 W. http://arius.com/sims/UnMatched%20Load%20Power.png I'd say that is pretty clear evidence that matched loads are not the way to maximize power transfer when the load impedance is fixed and the output impedance is controllable. Quite simply, if your prime objective is to get maximum power out of a power (energy?) source, the source having an internal resistance is a BAD THING. You don't design the source to have an internal resistance equal to its intended load resistance. No one designs lead-acid batteries that way (do they?), so why RF transmitters? Because RF transmitters deliver high frequency AC to a transmission line. So, the laws of physics are different with AC (high frequency or not)? Please show the equations, literature, links, or any other suitable authority advancing that theory. Yes, for AC you get a whole new set of laws such as: Capacitors no longer have an infinite impedance. Inductors no longer have zero impedance. Transmission lines work. Resonant circuits work. Resonant cavities work. Inductive coupling works. Generation of an electromagnetic field that can propagate works. There are many, many more differences between AC and DC. -- Jim Pennino |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Vertical Antenna Performance Question | Antenna | |||
Antenna Question: Vertical Whip Vs. Type X | Scanner | |||
Question about 20-meter monoband vertical (kinda long - antenna gurus welcome) | Antenna | |||
Technical Vertical Antenna Question | Shortwave | |||
Short STACKED Vertical {Tri-Band} BroomStick Antenna [Was: Wire ant question] | Shortwave |