Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Nice job Robert, I really liked it
Art "Robert Monsen" wrote in message news:6gKad.230613$D%.163996@attbi_s51... Alan Horowitz wrote: when a current just starts flowing into a RL or RC circuit, how does the voltage "know" that it should be increasing exactly 63% during each time-constant period? And whence the number 63%? Suppose you are trying to fill up a box with balls. However, for some strange reason, you've decided that each time you throw in balls, you'll throw in 1/2 of the balls that will fit in the remaining space. At the first second, you have 1/2 the balls. Next second, you'll have that plus 1/2 of the remaining space, which is 1/2 + 1/4 = 3/4. The third second, you'll have that plus 1/2 the remaining space, ie, 1/2 + 1/4 + 1/8 = 7/8... So, the number of balls at any time t will be: B(t) = 1 - (1/2)^t Thus, after 3 seconds, there will be B(3) = 1 - (1/2)^3 = 1 - 1/8 = 7/8, just like above. Now, apply that same reasoning, only instead of using the ratio 1/2, use the ratio 1/e (since we are applying arbitrary rules) Then B(t) = 1 - (1/e)^t After the first second, you'll have B(1) = 1 - (1/e)^1 = 1 - 1/e = 0.632 (that is, 63%) Strange coincidence, isn't it? It happens because when you are charging a capacitor through a resistor, you are throwing balls, in the form of charges, into a box (the capacitor), and the number of charges you throw at any given time (the current) depends on how many charges are already on the capacitor (the voltage). Each step of the formula above is one time constant, RC. By dividing out the RC, you can get the answer given seconds, ie B(t) = 1 - (1/e)^(t/RC) = 1 - e^(-t/RC) Where B is the percentage 'filled' the capacitor is (ie, what percentage it is of the input voltage). Why is 1/e used instead of 1/2? That has to do with the fact that we must have a continuous solution, not a solution based on ratios of existing values; the rate of change of the current (ie, how many balls we throw in per unit time) is proportional to the voltage remaining, which is continuously changing. Using 1/e instead of 1/2 allows us to generalize to this, in the same way as the compound interest formula allows us to compute 'continuously compounding' interest. -- Regards, Robert Monsen "Your Highness, I have no need of this hypothesis." - Pierre Laplace (1749-1827), to Napoleon, on why his works on celestial mechanics make no mention of God. |