Home |
Search |
Today's Posts |
#8
![]() |
|||
|
|||
![]()
On Sun, 09 Jul 2017 14:16:20 -0400, Pat wrote:
On Sun, 09 Jul 2017 10:53:33 -0700, Jeff Liebermann wrote: How can a varying electric field from a noise source not also create a corresponding magnetic field? The transmitter generates both. You can reduce the sensitivity of a receiving loop to the electric E field by shielding, leaving only the magnetic H component. I understand making antennas that are sensitive to only the H field. My question is why would I want to? If the noise has both components, how does an H field only antenna reduce unwanted noise? Pat That should be the E and B field, not H field. My mistake. I wish that I had a supportable answer to this question. There are quite a few opinions on the topic. Here's one that says that all the shield does is make it easier to build a balanced antenna: https://electronics.stackexchange.com/questions/70262/what-if-anything-makes-shielded-loop-antennas-so-great-at-rejecting-local-nois It also states that it is impossible to block either the E or B fields, which contradicts what I wrote. To be uncharacteristically honest, I don't know exactly what the shield does and how it works. I do know that in building LF (30-300KHz) loop type direction finders, the noise levels with a shielded loop were far lower than with an unshielded loop. How much? I don't recall as it was a long time ago, but it was quite noticeable. Whether this also applies at HF frequencies is also unknown. I have my own simplistic understanding of how a magnetic loop operates. It works because the Q of the loop is very high. In some cases, so high that the operating bandwidth of the loop is narrower than modulation bandwidth. For example, if I use the default numbers in the AA5TB loop calculator spreadsheet: http://www.aa5tb.com/loop.html http://www.aa5tb.com/aa5tb_loop_v1.22a.xls it shows a Q=1746 at 7MHz. BW = freq/Q = 7MHz/1746 = 4.1KHz That's the width of about 2 SSB signals at 2KHz modulation bandwidth each, which is barely acceptable. I think you can see that if I play with the dimensions, which will increase the Q, it won't take much to end up with an antenna that's narrower than the signal it's trying to receive. Another problem with a high Q antenna is that it has to be constantly tuned to compensate for changes in tuning caused by mechanical vibrations, changes in nearby metal objects, rotation, etc, as well a slight changes in operating frequency. That begs the question, what does such high Q do for you? Well, it dramatically reduces interference from other stations on nearby frequencies. It produces a very efficient antenna. I improves receiver sensitivity by removing quite a bit of noise, EMI, and RFI that might sneak in through the receiver bandpass, through various possible mixes (usually with stations on adjacent frequencies), through receiver images, and through static buildup on the antenna. The price you pay is having to use VERY rigid construction, expensive (vacuum or butterfly) tuning capacitors, silver solder, a potentially complicated automatic antenna tuner, and having to retune every time you change ANYTHING while operating. Is it worth it? I think so. I may soon see how well a magnetic loop really works. A friend recently installed a 55ft tower and a collection of HF yagi antennas. I bet him that I could build a magnetic loop antenna that would hear the same stations as his monster yagi, but near ground level and much smaller size and cost. The bet is for lunch at the local coffee shop. This is going out on a limb, but I believe that it can be done receive. Unfortunately, because of the narrow antenna bandwidth, I can't use WSPR and PSK Reporter to compare gain and coverage. Suggestion: Use the AA5TB spreadsheet, 4NEC2, etc to design something. Or, just follow someone's construction instructions. Go cheap initially so that you can see how it should be done. Improve the design as you go along. -- Jeff Liebermann 150 Felker St #D http://www.LearnByDestroying.com Santa Cruz CA 95060 http://802.11junk.com Skype: JeffLiebermann AE6KS 831-336-2558 |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Re Magnetic Loop !!! | Antenna | |||
Magnetic Loop !!! | Antenna | |||
MFJ 1786 magnetic loop | Antenna | |||
Magnetic loop for sale | Equipment | |||
Magnetic loop for sale | Equipment |