LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #9   Report Post  
Old November 26th 04, 03:51 AM
Wes Stewart
 
Posts: n/a
Default

On Thu, 25 Nov 2004 20:20:32 GMT, (Robert Lay
W9DMK) wrote:

Bob,

You might want to look at this paper:

http://users.triconet.org/wesandlinda/AIEE_High_Swr.pdf



|Various authors provide curves or formula for computing the "total
|loss" in transmission lines, as opposed to the "matched-line" loss.
|Specifically, The ARRL Antenna Book gives an equation in Chapter 24
|that seems to give results consistent with other sources (See the
|details at the end of this posting). However, there seems to be a
|fundamental flaw in the way in which the equation is applied.
|
|In essence, the equation provides a loss factor which is a function of
|the matched-loss attenuation and the absolute reflection coefficient.
|The matched-loss attenuation is the value normally expressed in dB per
|100 ft. and shown in tables or shown in logarithmic plots as a
|function of frequency. The reflection coefficient is introduced into
|the expression in order to increase the total losses as the SWR on the
|line increases.
|
|After calculating a total loss factor it is applied to lines of any
|length based on the reflection coefficient at the load. In my opinion,
|it makes no sense whatsoever to provide an expression that is to
|determine the losses per unit length on a line and have it based on
|the reflection coefficient at the end of the line. If there is a
|mismatched load, and if the line has losses, then it follows that the
|SWR will become lower and lower the further we are from the
|termination. That being the case, would it not make more sense to say
|that the "additional" losses would be much higher at the load end of
|the line, where the SWR is high, than at great distance from the load,
|where the SWR is significantly lower? In fact, if the line is long
|enough, we know that the SWR approaches 1:1, and in a line with an SWR
|of 1:1 there should be no additional losses above the matched-line
|losses.
|
|Nonetheless, with that non-sensical approach, the numerical examples
|shown at the referenced page and also in a later article on the
|subject of Highly Reactive Loads makes it quite clear that the loss
|factor is applied uniformly to the entire length of line.
|
|If we take the expression for the total loss and apply it to small
|increments of line wherein the SWR is relatively constant, then it not
|only makes more sense, but it also predicts noticeably less total loss
|in longer lines.
|
|I have embarked on careful measurements of lines severely mismatched
|(quarter wave open circuit stubs), and I can find no correlation
|between my measurements and the values predicted by the "total loss"
|equation. My measurements always show very low losses in comparison to
|the model.
|
|I would be interested in corresponding with anyone who has other
|models for line losses, or anyone who has made measurements on
|quarter-wave stubs.
|
|##########Equation and data taken directly from The ARRL Antenna Book,
|17th Ed., page 24-9 ###############
|(Eq 10) Total Loss (dB) = 10 log [ {(Alpha * Alpha - (AbsRho *
|AbsRho)} / {Alpha * (1- (AbsRho * AbsRho)) } ]
|
|where
|
| Alpha = 10^(ML/10) = matched-line loss ratio
|
| AbsRho = (SWR - 1) / (SWR + 1)
|
|where
| ML = the matched-line loss for particular length of line, in
|dB
|
| SWR = SWR at load end of line
|
|The text then goes on with a numeric example using a 150 ft. length of
|RG-213 coax that is terminated in a 4:1 mismatch (SWR = 4:1, AbsRho =
|0.6) at 14.2 MHz. The calculations for total line loss, per the above
|equation, results in a total line loss of 2.107 dB.
|
|
|
|
|Bob, W9DMK, Dahlgren, VA
|http://www.qsl.net/w9dmk

 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Current in antenna loading coils controversy - new measurement Yuri Blanarovich Antenna 69 December 5th 03 02:11 PM
Complex line Z0: A numerical example Roy Lewallen Antenna 11 September 13th 03 01:04 AM
A Subtle Detail of Reflection Coefficients (but important to know) Dr. Slick Antenna 199 September 12th 03 10:06 PM
Re-Normalizing the Smith Chart (Changing the SWR into the same load) Dr. Slick Antenna 98 August 30th 03 03:09 AM


All times are GMT +1. The time now is 10:07 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017