LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #10   Report Post  
Old August 22nd 03, 12:04 AM
William E. Sabin
 
Posts: n/a
Default

Roy Lewallen wrote:
A big deal is being made of the general assumption that Z0 is real.

As anyone who has studied transmission lines in any depth knows, Z0 is,
in general, complex. It's given simply as

Z0 = Sqrt((R + jwL)/(G + jwC))

where R, L, G, and C are series resistance, inductance, shunt
conductance, and capacitance per unit length respectively, and w is the
radian frequency, omega = 2*pi*f. This formula can be found in virtually
any text on transmission lines, and a glance at the formula shows that
Z0 is, in general, complex.


A good approximation to Z0 is:

Z0 = R0 sqrt(1-ja/b)

where Ro = sqrt(L/C)
a is matched loss in nepers per meter.
b is propagation constant in radians per meter.

The complex value of Z0 gives improved accuracy in
calculations of input impedance and losses of
coax lines. With Mathcad the complex value is
easily calculated and applied to the various
complex hyperbolic formulas.

Reference: QEX, August 1996

Bill W0IYH



 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT +1. The time now is 07:05 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017