| Home |
| Search |
| Today's Posts |
|
#11
|
|||
|
|||
|
Cecil Moore wrote:
wrote: Regardless of whether there is an alternative explanation, you should reject the reflected power model because.... In general, IT DOES NOT WORK. In general, our feedline losses are low enough that it does work. In general on HF, we are dealing with near-resistive Z0's and Z0-matched systems. There seems to be a bit of a vocabulary problem. The 'general case' is the one that is more encompassing as in 'general relativity' when compared to 'special relativity'. So in your passage above, you are agreeing with my assertion. In GENERAL, IT DOES NOT WORK. In the specific case of RF, "our feedline losses are [usually] low enough that it does work." In the specific case of HF, "we are [usually] dealing with near-resistive Z0's and Z0-matched systems." With which I have no dispute. But that still leaves us with.... In GENERAL, IT DOES NOT WORK. This strongly suggests a flaw in the model. As has been aptly demonstrated in another thread, it does not work for lines with complex Z0. Actually it does. All one has to do is take the power interference terms into account. Exactly my point. So now the net power is no longer the sum of the forward and reflected power; there is a third term which is neither the forward nor the reflected power. In GENERAL, IT DOES NOT WORK. This, of course, will not prevent you from taking advantage of it where it does work. But always remember that it ONLY works in special cases. With the possible exception of QED, that statement is true of ALL math models, including yours. Yours only works in the special case of perfect steady-state conditions I am unsure what you think my model is. Perhaps you could elaborate? In any case, my argument is that in GENERAL, the reflected power model DOES NOT WORK. This is independent of whether I (or anyone) has an alternative which does work. ....Keith |