Home |
Search |
Today's Posts |
#3
![]() |
|||
|
|||
![]()
It's even easier than that. Using the _definition_ of reflection
coefficient, rho = Vr/Vf, we see that Vr=-Vf and therefore the net line voltage at that point is zero (that is, Vf+Vr, or Vf-Vf, or zero). That's either a real short or a virtual short. Cheers, Tom "David Robbins" wrote in message ... lets see... rho = (Z - Zo)/(Z + Zo) if rho = -1 then -1=(Z-Zo)/(Z+Zo) or -1*(Z+Zo)=(Z-Zo) or -Z - Zo = Z - Zo or -Z = Z the only value i know that satisfies that is zero. lets substitute it back in to be sure... -1=(0-(50+j50))/(0+(50+j50)) -1=(-50-j50)/(50+j50) -1=-1(50+j50)/(50+j50) -1=-1 qed. |
Thread Tools | Search this Thread |
Display Modes | |
|
|