Home |
Search |
Today's Posts |
#4
![]() |
|||
|
|||
![]()
I trust we can all agree that the definition of rho is rho=Vr/Vf, and
I trust we can all agree that on a TEM line, the net voltage Vnet=Vr+Vf. If the net voltage is zero (i.e. at a short circuit), then clearly Vr=-Vf, and rho=-Vf/Vf=-1. Then whatever formula you chose to use to find rho at a load from the load impedance, Zload, and the line characteristic impedance, Zo, better work out right for a short circuit termination. Note that "rho=(Zload-Zo*)/(Zload+Zo)" does NOT work for that simple case, unless Zo*=Zo. But "rho=(Zload-Zo)/(Zload+Zo)" does work. You can easily go through something similar for an open circuit load. Note that rho=-1 for a short circuit load, and rho=+1 for an open circuit load, independent of line impedance. Cheers, Tom (Tom Bruhns) wrote in message ... It's even easier than that. Using the _definition_ of reflection coefficient, rho = Vr/Vf, we see that Vr=-Vf and therefore the net line voltage at that point is zero (that is, Vf+Vr, or Vf-Vf, or zero). That's either a real short or a virtual short. Cheers, Tom "David Robbins" wrote in message ... lets see... rho = (Z - Zo)/(Z + Zo) if rho = -1 then -1=(Z-Zo)/(Z+Zo) or -1*(Z+Zo)=(Z-Zo) or -Z - Zo = Z - Zo or -Z = Z the only value i know that satisfies that is zero. lets substitute it back in to be sure... -1=(0-(50+j50))/(0+(50+j50)) -1=(-50-j50)/(50+j50) -1=-1(50+j50)/(50+j50) -1=-1 qed. |
Thread Tools | Search this Thread |
Display Modes | |
|
|