Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Dilon Earl wrote:
Bill; Thanks, that all makes sense. Can you consider a Transmitter to have an internal resistance like the generator that changes with the plate and tune controls? If I have a 100 watt transmitter and my wattmeter shows 3 watts reflected. Is 3 watts actually being dissipated in the tank and final PA? No. If the transmitter output is 100 W and the reflected power is 3 W, then the 100 W is the difference between 100+3=103 W (forward power) and 3 W (reflected power). The question "where does the reflected power go?" never seems to have an acceptable answer. Very strange. A good way to look at is as follows: The junction of the transmitter output jack and the coax to the antenna is a "node", which is just a "point" or "location" where the jack and the coax meet. At this node the voltage is exactly equal to the voltage output of the amplifier (VPA) and also the voltage across the input of the coax (VCOAX). The voltage VCOAX) across the coax is equal to the phasor sum of a forward voltage wave that travels toward the antenna and a reverse voltage wave that is traveling from the antenna backward toward the transmitter. Also, at the node, IPA is the current from the PA and ICOAX is the phasor sum of a current wave that travels to the antenna and a return current wave that travels toward the transmitter. At the node, the IPA current and the ICOAX current are exactly equal and in the same direction (toward the antenna). At the node the IPA current is equal to the ICOAX coax forward current minus the ICOAX reflected current. In other words there is an *EQUILIBRIUM* at the node between VPA voltage and VCOAX voltage, and an *EQUILIBRIUM* between IPA current and ICOAX (forward and reflected) current. This explanation accounts for everything that is going on at the node. The answer to the question "where does the reflected power go?" is the following: "It is a nonsense question that has caused nothing but misery". The reflected power does not actually *GO* anywhere. The correct answer is that forward and reflected coax waves always combine precisely and exactly with the voltage and current that is delivered by the PA. The voltage and current at the junction are correctly accounted for. The basic principles here are Kirchhoff's voltage law and Kirchhoff's current law, as applied to the node. You can study Kirchhoff's laws in the textbooks. If we apply these laws and calculate the 100 W power out of the PA and the 100 W power that is dumped into the coax, they are exactly equal. They cannot possibly be unequal. The power delivered is the real part of the product of VPA and IPA (100 W), which is identical to the real part of the product of VCOAX and ICOAX (100 W). Observe carefully the following: We do not need to know anything about the PA and its circuitry. The PA is nothing more than an anonymous "black box". In other words, any 100 W (output) PA will perform exactly as I have described. Bill W0IYH |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Conservation of Energy | Antenna |