LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #33   Report Post  
Old March 19th 05, 11:24 PM
John Doe
 
Posts: n/a
Default

Roy,
Thank you for your concise description of the auto-transformer.
Now to inject a little spice into the equation
Perhaps you would like to tackle the auto-transformer
configured as; Ground|--\\\\\\\---50R J0(from Tx)
^------To Antenna
Thanks again,
73



"Roy Lewallen" wrote in message
...
Rob Roschewsk wrote:

Roy, how did you come up with "1275 ohms in *parallel* with 319 ohms "
equatating to "75 ohms resistance in series with 300 ohms of capacitive
reactance" ??? Just wondering.


I got it from a routine I keep on my HP48GX calculator, which comes from
the following series-parallel transformations:

Let:

Rs = resistance of series equivalent circuit
Xs = reactance of series equivalent circuit
Rp = resistance of parallel equivalent circuit
Xp = reactance of parallel equivalent circuit

To convert a series circuit to a parallel circuit which has an identical
impedance:

Rp = (Rs^2 + Xs^2) / Rs
Xp = (Rs^2 + Xs^2) / Xs

To convert a parallel circuit to a series circuit which has an identical
impedance:

Rs = (Rp * Xp^2) / (Rp^2 + Xp^2)
Xs = (Rp^2 * Xp) / (Rp^2 + Xp^2)

These aren't very difficult to derive if you're comfortable with complex
arithmetic. They should be in the toolkit of everyone who works with
electrical circuits.

Important things to keep in mind when using these transformations:

1. Although frequency isn't explicitly involved in the conversions, when
you make an equivalent circuit from a resistor and inductor or
capacitor, Xp and Xs will change with frequency. Therefore a transformed
circuit will have the same impedance as the original only at one
frequency. If the frequency changes, new values of resistance and
capacitance or inductance have to be calculated for the equivalent

circuit.

2. Because point 1, one circuit or the other will usually be better for
modeling a real circuit over a range of frequencies, because the
impedance of the real circuit will change with frequency more like one
or the other of the two equivalent circuits.

In the example, where the feedpoint Z = 75 - j300:

Rs = 75
Xs = 300

so

Rp = (75^2 + (-300)^2) / 75 = 1275
Xp = (75^2 + (-300)^2) / (-300) = -318.75

You can check this if you'd like. You'll find that the parallel
combination of 1275 and -j318.75 ohms is 75 - j300.

Roy Lewallen, W7EL



 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Yaesu FT-857D questions Joe S. Equipment 6 October 25th 04 09:40 AM
LongWire Antenna Jim B Shortwave 5 March 2nd 04 09:36 AM
EH Antenna Revisited Walter Maxwell Antenna 47 January 16th 04 04:34 AM
Poor quality low + High TV channels? How much dB in Preamp? lbbs Antenna 16 December 13th 03 03:01 PM
Poor quality low + High TV channels? How much dB in Preamp? lbbs Shortwave 16 December 13th 03 03:01 PM


All times are GMT +1. The time now is 10:36 PM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017