| Home |
| Search |
| Today's Posts |
|
#11
|
|||
|
|||
|
Reg Edwards wrote:
"Ian Jackson" wrote - Are you sure it's as high as that, Reg? I once did a Smith Chart plot of the impedance at the centre of a dipole, the valued being taken from a table 'compiled by Wu' (LK Wu?). These only catered for a lengths up to a few wavelengths. As the plot progressed round and round the Smith Chart, it seemed to be heading for something around 350 to 400 ohms. I've just done a search on 'Wu+dipole+impedance', and one of the results is http://www.fars.k6ya.org/docs/antenn...nce-models.pdf I'll have a read of it today. =================================== The characteristic impedance of an infinitely long wire is Zo. If we cut the line and measure between the two ends we obtain an input impedance of twice Zo. Which is the answer to our problem. Zo is a function of wavelength, conductor diameter and conductor resistance R where R includes the uniformly distributed radiation resistance. On a high Zo line the radiation resistance is small compared with Zo and the only effect of the radiation resistance is to give Zo a small negative angle. Which when estimating Zo can be ignored. (It is conductor resistance which at HF gives Zo of ALL lines a very small negative angle). In the problem posed, the current is also uniformly distributed along the low-loss line and radiation resistance is not the value we are familiar with and what we might do with it. And so we get approximately - Rin = 120 * ( Ln( Wavelength / 2 / d ) - 1 ) At a wavelength of 2 metres and a conductor diameter of 10mm the input resistance = 433 ohms. I cannot guarantee the above formula to be correct. But is it low enough for you? ;o) Mr Wu calculates radiation resistance which is not the same as input impedance unless correctly referenced. It is usual in technical papers to calculate Radres at one end of the antenna. Or it may be the distributed value. I havn't the time to find and study the full text. From past experience, with me, it usually ends up as a wild goose chase. ---- Reg. Sounds reasonable, Reg. To put it for simple people like me, it would mean it's a transmission line of diameter x with an infinite diameter shield. Then we feed 2 of them, balanced, colinear, and that's our R sub r. Did I misunderstand? tom K0TAR |
| Thread Tools | Search this Thread |
| Display Modes | |
|
|
Similar Threads
|
||||
| Thread | Forum | |||
| Putting a Ferrite Rod at the Far-End of a Random Wire Antenna ? | Antenna | |||
| Putting a Ferrite Rod at the Far-End of a Random Wire Antenna ? | Shortwave | |||
| My new antenna ... | Shortwave | |||
| DDS 50 ohms buffer ? | Homebrew | |||
| 50 Ohms "Real Resistive" impedance a Misnomer? | Antenna | |||