Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Ron wrote:
Maybe I should restate my question. Assume a receiving antenna is in the center of a sphere and the received signal is coming in equal amounts from all points on the surface of the sphere. Which receiving antenna would capture more power, an omni or a high gain beam? There are no noise and no losses. They'll intercept equal amounts, assuming both are lossless. The directional antenna will intercept a larger fraction than the isotropic antenna in the directions it favors, and less in others. The total will be be the same. In reverse, this is equivalent to calculating the average gain of the antennas, which is the same for all lossless antennas. Roy Lewallen, W7EL |
#2
![]() |
|||
|
|||
![]()
Roy Lewallen, W7EL wrote:
They'll intercept equal amounts, assuming both are lossless. The directional antenna will intercept a larger fraction than the isotropic antenna in the directions it favors, and less in others. The total will be be the same. In reverse, this is equivalent to calculating the average gain of the antennas, which is the same for all lossless antennas. Roy Lewallen, W7EL Hello to all, my name is Miguel, LU 6ETJ. It is a pleasure to read this group. This topic is really an interesting question... Modestly I would want to point out the following thing: Imagine an inner radiant spherical surface with a finite and uniform density radiant energy. Aim a directional antenna with a directivity of, for example, one stereoradian on any direction. How is it able to such an antenna to receive equal quantity of energy of a smaller portion of the sphere than an antenna that is able to receive the energy taken place by the entirety sphere? 73´s of Miguel Ghezzi (LU 6ETJ) Untranslated text for reference (my written english is a little poor ;( ): Hola a todos, mi nombre es Miguel LU 6ETJ. Es un gusto leer este grupo. Este tópico es realmente una interesante pregunta... Modestamente desearía señalar lo siguiente: Imagine la parte interior de una esfera radiante, con una densidad de energia radiante finita y uniforme. Apunte un antena direccional con una directividad de, por ejemplo, un estéreo radian en cualquier dirección. ¿Cómo puede tal antena recibir igual cantidad de energía de una porción menor de la superficie radiante, que una antena que es capaz de recibir la energía producida por la totalidad de la esfera? 73´s de Miguel Ghezzi (LU 6ETJ) |
#3
![]() |
|||
|
|||
![]()
On 30 Oct 2005 10:41:53 -0800, "lu6etj" wrote:
Imagine an inner radiant spherical surface with a finite and uniform density radiant energy. Aim a directional antenna with a directivity of, for example, one stereoradian on any direction. How is it able to such an antenna to receive equal quantity of energy of a smaller portion of the sphere than an antenna that is able to receive the energy taken place by the entirety sphere? Hi Miguel, You are quite right. Only an isotropic antenna can take all the energy as only an isotropic could have transmitted it. The uniform distribution and the spherical geometry force this solution even though it is a practical impossibility. The real question is, how did that energy get turned around to come back? 73's Richard Clark, KB7QHC |
#4
![]() |
|||
|
|||
![]()
Richard Clark wrote:
The real question is, how did that energy get turned around to come back? A conductive Dyson's sphere? -- 73, Cecil http://www.qsl.net/w5dxp |
#5
![]() |
|||
|
|||
![]()
Would it be possible that the question went by the following thing?
When we study directional or isotropic receiving antennas, we assume for example: Punctual sources generating spherical wave fronts (convex) or infinitely far away punctual sources creating plane wave fronts for all the practical effects. Under these conditions the receiving antennas are "outer" of the radiant sphere; this way, the effective area of a directional antenna represents a bigger external surface and it intercepts more energy than the corresponding to an isotropic antenna, then everything agrees with what we have learned on the directivity of the antennas, but in this example the conditions are inverted, now we don't have plane or convex fronts, we have concave fronts. The solution under the new conditions is different from the habitual one... I think that the environment of the problem is similar that of the Kirchhoff law of thermal radiation: "a small sphere inside a radiant sphere". I also think that the conditions of this problem could be similar (and therefore taken place artificially) to those of light`s receiver inside a luminous sphere. In this case we proceed as when we study the entropía of an isolated system, in such a system the entropía can diminish, although that is not possible for the whole universe (I suppose this allows me to escape elegantly of Richard's question... ; D 73´s for all, and thank you very much for your very interesting and instructive habitual postings. Miguel Ghezzi (LU 6ETJ) Spanish text for reference (withouts my translation errors). ¿Sería posible que la cuestion pasara por lo siguiente?: Cuando estudiamos antenas receptoras direccionales o isotropicas asumimos por ejemplo: Fuentes puntuales generando frentes de onda esféricos (convexos) o fuentes puntuales infinitamente alejadas que producen frentes de onda planos para todos los efectos practicos. En estas condiciones las antenas receptoras están "fuera" de la esfera radiante; así, el área efectiva de una antena direccional representa una superficie exterior mayor e intercepta más energía que la correspondiente a una antena isotrópica, entonces todo concuerda con lo que hemos aprendido sobre la directividad de las antenas, pero en este ejemplo las condiciones se invierten, ahora no tenemos frentes planos o convexos, sino de frentes cóncavos. La solución en las nuevas condiciones es diferente de la habitual... Pienso que el entorno del problema es parecido al de la ley de Kirchhoff de la radiación térmica: "una pequeña esfera dentro de una esfera radiante". También pienso que las condiciones de este problema pudieran ser similares (y por lo tanto producidas artificialmente), a las de un receptor de luz dentro de una esfera luminosa. En este caso procedemos como cuando estudiamos la entropía de un sistema aislado, en tal sistema la entropía puede disminuir, aunque eso no sea posible para el universo entero (supongo que eso me permite huir elegantemnnte de la pregunta de Richard ;D 73's para todos y muchas gracias por sus interesantes e instructivos escritos habituales. Miguel Ghezzi (LU 6ETJ) |
#6
![]() |
|||
|
|||
![]()
On 30 Oct 2005 15:50:50 -0800, "lu6etj" wrote:
although that is not possible for the whole universe (I suppose this allows me to escape elegantly of Richard's question... ; D 73=B4s for all, and thank you very much for your very interesting and instructive habitual postings. Hi Miguel, Can there be an escape? Ron's question was posed with an impossible proposition. A collapsing sphere of electromagnetic energy? This has so many so many fantastic presumptions built in. I hope this translates well for you (it does not make sense in any language). 73's Richard Clark, KB7QHC |
#7
![]() |
|||
|
|||
![]()
Hello Richard (my middle name is Ricardo = Richard. We are
"Tocayos"...) Richard wrote: Can there be an escape? Ron's question was posed with an impossible proposition. A collapsing sphere of electromagnetic energy? Ron wrote: Assume an incoming rf signal has exactly the same strength in all 3 dimensions i.e., completely omnidirectional. If I have understood well Ron's question... What about a number tending (spreading?, going to? - a limit, as in calculus ) to infinite, of coherent punctual electromagnetic identical sources on the inner surface of a sphere with testing antennas in center of it? (I think it isn't necessary neither coherence or identicals sources. Noise sources fix well in my interpretation of the concept that (I believe) Ron it wanted expose to us). Can it these conditions to be thought? Could it be simulated with an electromagnetic CAD as FEMLAB? Are they agree with Ron question? What do you say Ron? Miguel Ghezzi (LU 6ETJ) PS: I have another physical doubt, if you can help me. Can a real DC current radiate electromagnetic energy?. It is not captious or cheat question. I think yes, but I don't want to condition your answers with my hypotesis. Thank you in advance for your answers. ------------------------------------------------------------------------------------------------------------------- Richard escribió: Puede haber una salida?. La pregunta de Ron fue presentada con proposicion imposible. Una esfera de energía electromagnetica colapsandose? Ron escribio: Asuma una señal de rf entrante que tiene exactamente la misma intensidad en las tres dimensioes, por ej, que es completamente omnidireccional. Si he comprendido bien la pregunta de Ron... Que tal un numero tendiendo a infinito de fuentes electromagneticas puntuales identicas, situadas sobre la superficie interior de una esfera y las antenas de prueba en el centro de la misma? (creo que no es necesaria ni coherencia ni fuentes identicas, fuentes de ruido van bien en mi interpretacion del concepto que (creo) que Ron quiso presentarnos. Pueden estas condiciones ser pensadas? Podrian simularse en un CAD de electromagnetismo, tal como FEMLAB? Estan ellas de acuerdo con la pregunta de Ron? Que dices tu Ron? Miguel Ghezzi (LU 6ETJ) PS: Tengo otra duda física si ustedes pueden ayudarme. Puede una CC real irradiar energía electromagnetica? No es una pregunta capciosa ni una broma. Yo creo que si, pero no quiero condicionar sus respuestas con mi hipotesis. Agradezco sus respuestas por adelantado. |
#8
![]() |
|||
|
|||
![]()
On 31 Oct 2005 09:35:09 -0800, "lu6etj" wrote:
PS: I have another physical doubt, if you can help me. Can a real DC current radiate electromagnetic energy?. It is not captious [capricious] or cheat [trick] question. I think yes, but I don't want to condition your answers with my hypotesis. Hi Miguel, A "real" DC current? Yes. A "real" DC current (at some point in time) starts - and stops. It is at each of these two points that the step change offers radiation. The "time" it takes to go from one level to the other defines that frequency, and its harmonics. A "perfect" DC current has always been on, and will always be on. No change, no radiation. 73's Richard Clark, KB7QHC |
#9
![]() |
|||
|
|||
![]() Richard Clark wrote: On 30 Oct 2005 15:50:50 -0800, "lu6etj" wrote: although that is not possible for the whole universe (I suppose this allows me to escape elegantly of Richard's question... ; D 73=B4s for all, and thank you very much for your very interesting and instructive habitual postings. Hi Miguel, Can there be an escape? Ron's question was posed with an impossible proposition. A collapsing sphere of electromagnetic energy? This has so many so many fantastic presumptions built in. On all but the smallest of scales, the sky is quite uniform in its luminosity. It can hardly be described as a "collapsing sphere"; not even from the point of view of a geocentric model of the universe. ac6xg |
#10
![]() |
|||
|
|||
![]()
On Mon, 31 Oct 2005 10:16:07 -0800, Jim Kelley
wrote: On all but the smallest of scales, the sky is quite uniform in its luminosity. It can hardly be described as a "collapsing sphere"; not even from the point of view of a geocentric model of the universe. Hi Jim, Perhaps not, but "quite uniform" is rather in the eye of the beholder. When I take panagraphic photographs (a broad scale), it is quite evident that the uniformity is not very uniform. Another variable is that polarization is not very uniform either (which, photographically may be saying the same thing). The eye is a wonderful device, but not very precise. 73's Richard Clark, KB7QHC |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Handheld GMRS/FRS radio antenna gain question | Antenna | |||
Imax ground plane question | CB | |||
Antenna Advice | Shortwave | |||
LongWire Antenna | Shortwave | |||
Poor quality low + High TV channels? How much dB in Preamp? | Shortwave |