Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Roy Lewallen wrote:
"You can find the explanation for why this is in any electromagnetic text." I found it in Terman. As we all know, we place correctly polarized dipoles, for example, parallel to the wavefront for maximum response. Terman confirms the electric field in this instance induces no energy in the antenna. It all comes from the magnetic field. If antenna current flows, no matter where it comes from, loss resistance causes a voltge drop. That`s why the wire needs to be perfect. The electric field produces no voltage in the antenna because the wavefront has the same voltage across its entire surface. That`s because it all left the same point at the same time. So, a wire parallel to the front has no difference of potential induced by the wavefront`s electric field. It all must come from the mgnetic field. On page 2 of his 1955 edition, Terman says: "The strength of the wave measured in terms of microvolts per meter of stress in space is also exactly the same voltage that the MAGNETIC FLUX (my emphasis) of the wave induces in a conductor 1 m long when sweeping across this conductor with the velocity of light." From the above, it is seen that the electric field is not effective in inducing current in a receiving antenna parallel to a wavefront. All the energy intercepted by the antenna is induced by the magnetic field. Best regards, Richard Harrison, KB5WZI |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Inverted ground plane antenna: compared with normal GP and low dipole. | Antenna | |||
significance of feedline orientation | Shortwave | |||
Question for better antenna mavens than I | Shortwave | |||
QST Article: An Easy to Build, Dual-Band Collinear Antenna | Antenna | |||
Outdoor Scanner antenna and eventually a reference to SW reception | Shortwave |