Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Roy wrote, "... That is, the coil is capacitively coupled to ground,
and this causes displacement current from the coil to ground." In fact, if there were no such current -- if there were no capacitance from the coil to the world outside the coil -- then the time delay through the coil, calculated from tau = sqrt(L*C), would be zero. It is exactly this current that allows there to be a transmission-line behaviour and a corresponding time delay. That's not to say, however, that a physically very small loading coil with practically no capacitance to ground would not work as a loading coil. It just wouldn't have a transmission line behaviour worth mentioning. It is also exactly this displacement current from a large coil that allows the current at one end of the coil to be substantially different from the current at the other end. Cheers, Tom |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Current in Loading Coils | Antenna | |||
FCC: Broadband Power Line Systems | Policy | |||
FS: sma-to-bnc custom fit rubber covered antenna adapter | Scanner | |||
Current in antenna loading coils controversy (*sigh*) | Antenna | |||
Current in antenna loading coils controversy | Antenna |