Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Cecil Moore wrote:
And there's no such thing as current imbalance based on standing wave currents being different at each end of a loading coil. "Current imbalance" is a concept that doesn't apply to standing waves. "Phase rotation with position" is a concept that doesn't apply to standing waves. Standing wave current is NOT ordinary current. It is the superposition of two ordinary currents. You two are so close to agreement. Standing waves have a current that varies with position. The fact that the EZNEC simulation of a loading coil shows differing current in a situation that is a fairly pure standing wave situation (more energy bouncing up and down the antenna than is radiating from it) means that the RMS current will vary along the standing wave. And, since the simulation shows a different current magnitude at the two ends of the coil, a significant part of a standing wave cycle must reside inside the coil (more than the physical length between the two ends of the coil would account for). In one case (the highest frequency one) the phase of the current even reverses from one end of the coil to the other, as well as an amplitude variation, indicating that a standing wave node occurs some where inside the coil, and the two ends are on opposite ends of that node. If the two currents had been equal, but 180 degrees out of phase, the node would have been in the center of the coil. |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Current in Loading Coils | Antenna | |||
FCC: Broadband Power Line Systems | Policy | |||
FS: sma-to-bnc custom fit rubber covered antenna adapter | Scanner | |||
Current in antenna loading coils controversy (*sigh*) | Antenna | |||
Current in antenna loading coils controversy | Antenna |