Home |
Search |
Today's Posts |
#13
![]() |
|||
|
|||
![]()
chuck wrote:
Reg Edwards wrote: The permittivity, K, of water is about 80. The relative velocity of propagation along a wire immersed in water is about VF = 1/Sqrt( K ) = 0.11 At a frequency of 7.5 MHz, a 1/4-wavelength of wire immersed in water is only 1.1 metres = 43 inches long. Furthermore, in salt sea water, considering a wire as a transmission line, dielectric loss is so high there is little or no current flowing at the end of a quarterwave radial wire. Longer wires can be disregarded because they carry no current. So, at 7.5 MHz, there is no point in considering a system which has more than a radius of 1.1 metres. At higher frequencies the radius is even less. A copper coin, 1" in diameter, immersed in a large volume of salt water, has an impedance low enough to be used as an efficient ground for a 1/4-wave HF vertical antenna. It is limited by its power handling capacity. I have made measurements years ago but have no records as I didn't attach any importance to them at the time. And still don't. Unpolluted, clean, fresh pond water, is a different kettle of fish. Permittivity is still about 80 but the resistivity is very much greater. About 1000 ohm-metres is a reasonable value. ---- Reg. Interesting info, Reg. I also made some kitchen table-top sal****er measurements about a year ago, but at much lower frequencies than you discuss. My measurements are not handy at the moment, but they don't comport with yours. I utilized a variety of electrode geometries: concentric, 4 pole, parallel plate, etc. Measurements of electric field strength, conductivity, path conductance, etc. are not difficult but interpretation of the data stumped me. As you remember, the conductance of a sal****er path is a direct function of the path's cross-sectional area. A penny doesn't produce much of a cross-sectional area at its end of the path. Maybe your pennies are better than ours, Certainly worth more. 73. Chuck Hi Chuck So what would be the best size cross sectional area to achieve a close to perfect RF ground from 1 to 30 mhz over sea water? Considering things like corrosion, fowling, growth on the plate over time and any other factors that would deteriorate the effectiveness of this connection. You would want adequate safety margin when using this kind of simple direct contact. Bob |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Inverted ground plane antenna: compared with normal GP and low dipole. | Antenna | |||
Radials | Antenna | |||
Grounds | Shortwave | |||
Base Antenna Mounting | CB | |||
QST Article: An Easy to Build, Dual-Band Collinear Antenna | Antenna |