Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #2   Report Post  
Old January 3rd 04, 09:51 PM
Richard Harrison
 
Posts: n/a
Default

Richard Clark wrote:
"The "earliest high frequency antennas" were in fact BCB."

Yes, but not in Ed Laport`s book. Ed`s book covers LF, MF, and HF. Ed as
Chief Engineer of RCA International was most interested in RCA`s
maritime service, radiograms, shortwave broadcast, and radio relay
services. These were conducted above 1700 KHz. Ed observes that HF
propagation is a statistical business, as the ionosphere is always in
flux. Ed gives guidance in using the NBS Central Radio Propagation Lab
publications, hardly the advice of someone stuck in low gear.

Ed gives some of the most complete information to be found on horizontal
rhombics and rhombic arrays, hardly the advice of someone treating the
use of low frequencies.

Richard Clark wrote: "And guess what, they (earliest high frequency
antennas) are still Vertical antennas.

I agree that 1.7 MHz is medium wave as the break is often chosen as
3MHz. I also agree that MW broadcasting antennas are universally
vertically polarized.

The primary service area of a MW broadcast station is defined by the FCC
as the area well served by the ground wave. Of course vertical polarized
antennas are used because horizontal polarization produces no ground
wave.

Art Unwin started this thread it seems because he faulted a vertical
antenna for not having a 100-mile range using low power.

The vertical has a null overhead almost guaranteeing no short-hop sky
wave.
Low power obviates ground wave DX.

To make an evening sky wave trip of 100 miles at 160 meters, Art needs
an antenna with a lot of high-angle radiation, 60 or 70-degrees more or
less to use the ionosphere for short skip, or he needs enough effective
power to punch a signal through along the ground.

A horizontal dipole could provide the high-angle radiation for the sky
wave.

A vertical antenna could provide the ground wave signal which only needs
enough power to work day or night.

A 1/4-wave vertical antenna can produce an unattenuated field strength
at the earth`s surface of about 195 mV/m at one mile. At 100 miles, the
field strength is 1%, or about 2 mV/m.. Depending on the soil
conductivity, the actual signal reaching a receiver at 100 miles is
likely much less than the unattenuated value. In a quiet location, not
much signal is needed.

Best regards, Richard Harrison, KB5WZI

  #3   Report Post  
Old January 4th 04, 12:29 AM
Richard Clark
 
Posts: n/a
Default

On Sat, 3 Jan 2004 15:51:33 -0600 (CST),
(Richard Harrison) wrote:

Richard Clark wrote:
"The "earliest high frequency antennas" were in fact BCB."

Yes, but not in Ed Laport`s book. Ed`s book covers LF, MF, and HF. Ed as
Chief Engineer of RCA International was most interested in RCA`s
maritime service, radiograms, shortwave broadcast, and radio relay
services. These were conducted above 1700 KHz.


However, his observation was a historical one, not a current (at the
time of printing) one as evidenced by his stating that things changed.

snip
Art Unwin started this thread it seems because he faulted a vertical
antenna for not having a 100-mile range using low power.

The vertical has a null overhead almost guaranteeing no short-hop sky
wave.
Low power obviates ground wave DX.


This is far from true and again relies on HF, not MF observations.
You don't have to go very deep into your buddy's "Radio Propagation
Handbook" (Pete Saveskie). Chapter one, Ground Waves, employs a very
simple scenario with an 1/8th wave vertical radiator monitored out a
distance of 240 KM to no apparent difficulty in Ham terms, much less
FCC coverage issues. The discussion of the necessity for horizontal
antennas at this greater distance is notable by its vacuum in the
text.

My own study of Ground properties through a variety of references has
found there is quite a characteristic shift, a knee in the data, at
the 3 MHz frequency that clearly differentiates propagation at 160M
from that of 80M.

Shortwave stations clearly have an economic necessity to optimize
within their bands of operation. BCB stations are likewise
constrained. The two exhibit very different antenna solutions. It
follows that 160M more closely conforms to BCB than Shortwave for all
reasons considered.

To make an evening sky wave trip of 100 miles at 160 meters, Art needs
an antenna with a lot of high-angle radiation, 60 or 70-degrees more or
less to use the ionosphere for short skip, or he needs enough effective
power to punch a signal through along the ground.

A horizontal dipole could provide the high-angle radiation for the sky
wave.


And yet experience and reporting to this matter has shown abysmal
results. The shortfall of expectation with regard to actuality lies
in the Ground.

73's
Richard Clark, KB7QHC
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Inverted ground plane antenna: compared with normal GP and low dipole. Serge Stroobandt, ON4BAA Antenna 8 February 24th 11 10:22 PM
Measuring radiation resistance Reg Edwards Antenna 11 December 13th 03 12:51 PM
RF radiation detector harshit Antenna 7 December 3rd 03 12:59 PM
QST Article: An Easy to Build, Dual-Band Collinear Antenna Serge Stroobandt, ON4BAA Antenna 12 October 16th 03 07:44 PM


All times are GMT +1. The time now is 06:36 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017