Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Old November 25th 03, 06:50 AM
Jason Hsu
 
Posts: n/a
Default Can a 1W resistor handle 50W for 7msec?

It's part of a design for a T/R sense circuit for a noise cancellation
device.

I won't bore you with too many details. One thing I noticed in a
design I'm looking at is that 1W resistors could be subject to as much
as 50W of power apiece during the time it takes for a relay to
respond. This response time is 7msec. The overall duty cycle will be
low (well under 1%).

Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
second is also .35 Joules, which a 1W resistor should have no trouble
handling. Can the resistors be damaged during that .007 seconds?

Also, how much time does it take to damage a toroid? If it can handle
X units of flux density continuously, how much flux density can it
handle for .007 seconds with a low overall duty cycle (like well under
1%)?

Jason Hsu, AG4DG
usenet AAAAATTTTT jasonhsu.com
  #2   Report Post  
Old November 25th 03, 10:53 AM
GPG
 
Posts: n/a
Default

Make a parallell/ series combination to equal 51 ohm. Immerse in oil,
  #3   Report Post  
Old November 25th 03, 10:53 AM
GPG
 
Posts: n/a
Default

Make a parallell/ series combination to equal 51 ohm. Immerse in oil,
  #6   Report Post  
Old November 25th 03, 01:04 PM
Watson A.Name - Watt Sun, Dark Remover
 
Posts: n/a
Default

In article ,
mentioned...
It's part of a design for a T/R sense circuit for a noise cancellation
device.

I won't bore you with too many details. One thing I noticed in a
design I'm looking at is that 1W resistors could be subject to as much
as 50W of power apiece during the time it takes for a relay to
respond. This response time is 7msec. The overall duty cycle will be
low (well under 1%).

Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
second is also .35 Joules, which a 1W resistor should have no trouble
handling. Can the resistors be damaged during that .007 seconds?

Also, how much time does it take to damage a toroid? If it can handle
X units of flux density continuously, how much flux density can it
handle for .007 seconds with a low overall duty cycle (like well under
1%)?

Jason Hsu, AG4DG
usenet AAAAATTTTT jasonhsu.com


But what happens if the relay fails to close in 7 mSec? OOPS!

Or fails to close at all? BIG OOPS!

--
@@F@r@o@m@@O@r@a@n@g@e@@C@o@u@n@t@y@,@@C@a@l@,@@w@ h@e@r@e@@
###Got a Question about ELECTRONICS? Check HERE First:###
http://users.pandora.be/educypedia/e...s/databank.htm
My email address is whitelisted. *All* email sent to it
goes directly to the trash unless you add NOSPAM in the
Subject: line with other stuff. alondra101 at hotmail.com
Don't be ripped off by the big book dealers. Go to the URL
that will give you a choice and save you money(up to half).
http://www.everybookstore.com You'll be glad you did!
Just when you thought you had all this figured out, the gov't
changed it: http://physics.nist.gov/cuu/Units/binary.html
@@t@h@e@@a@f@f@l@u@e@n@t@@m@e@e@t@@t@h@e@@E@f@f@l@ u@e@n@t@@
  #7   Report Post  
Old November 25th 03, 01:04 PM
Watson A.Name - Watt Sun, Dark Remover
 
Posts: n/a
Default

In article ,
mentioned...
It's part of a design for a T/R sense circuit for a noise cancellation
device.

I won't bore you with too many details. One thing I noticed in a
design I'm looking at is that 1W resistors could be subject to as much
as 50W of power apiece during the time it takes for a relay to
respond. This response time is 7msec. The overall duty cycle will be
low (well under 1%).

Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
second is also .35 Joules, which a 1W resistor should have no trouble
handling. Can the resistors be damaged during that .007 seconds?

Also, how much time does it take to damage a toroid? If it can handle
X units of flux density continuously, how much flux density can it
handle for .007 seconds with a low overall duty cycle (like well under
1%)?

Jason Hsu, AG4DG
usenet AAAAATTTTT jasonhsu.com


But what happens if the relay fails to close in 7 mSec? OOPS!

Or fails to close at all? BIG OOPS!

--
@@F@r@o@m@@O@r@a@n@g@e@@C@o@u@n@t@y@,@@C@a@l@,@@w@ h@e@r@e@@
###Got a Question about ELECTRONICS? Check HERE First:###
http://users.pandora.be/educypedia/e...s/databank.htm
My email address is whitelisted. *All* email sent to it
goes directly to the trash unless you add NOSPAM in the
Subject: line with other stuff. alondra101 at hotmail.com
Don't be ripped off by the big book dealers. Go to the URL
that will give you a choice and save you money(up to half).
http://www.everybookstore.com You'll be glad you did!
Just when you thought you had all this figured out, the gov't
changed it: http://physics.nist.gov/cuu/Units/binary.html
@@t@h@e@@a@f@f@l@u@e@n@t@@m@e@e@t@@t@h@e@@E@f@f@l@ u@e@n@t@@
  #8   Report Post  
Old November 25th 03, 02:02 PM
Al
 
Posts: n/a
Default

In article ,
Bill Turner wrote:

On 24 Nov 2003 22:50:40 -0800, (Jason Hsu) wrote:

Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
second is also .35 Joules, which a 1W resistor should have no trouble
handling. Can the resistors be damaged during that .007 seconds?


__________________________________________________ _______

You really need to ask the manufacturer of the resistor. They are well
aware of the problem - if you get to the right person.

Having said that, here is a generalization: If the resistor's element
is a solid block of material, such as in a carbon composition type, it
will have very good pulse power ratings. On the other hand, if the
element is a film, it may develop tiny hot spots during pulsing and
eventually fail.


Many years ago I analyzed a problem with resistors which were
discoloring in the field. This involved two identical circuits with
identical singal inputs. In one circuit, a resistor kept turning brown
over time, in the other it did not. We were getting field returns as a
result of troubleshooting that focused on the brown resistors.

What was the difference? The resistor which did not discolor was resting
on two metal traces which ran under it, the one which discolored, was
resting on the PCB. That tiny amount of heatsinking provided by the
traces was the difference. Obviously, the circuit needed to be
redesigned, but it worked great on the breadboard when it went into
production.

Al

--
There's never enough time to do it right the first time.......
  #9   Report Post  
Old November 25th 03, 02:02 PM
Al
 
Posts: n/a
Default

In article ,
Bill Turner wrote:

On 24 Nov 2003 22:50:40 -0800, (Jason Hsu) wrote:

Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
second is also .35 Joules, which a 1W resistor should have no trouble
handling. Can the resistors be damaged during that .007 seconds?


__________________________________________________ _______

You really need to ask the manufacturer of the resistor. They are well
aware of the problem - if you get to the right person.

Having said that, here is a generalization: If the resistor's element
is a solid block of material, such as in a carbon composition type, it
will have very good pulse power ratings. On the other hand, if the
element is a film, it may develop tiny hot spots during pulsing and
eventually fail.


Many years ago I analyzed a problem with resistors which were
discoloring in the field. This involved two identical circuits with
identical singal inputs. In one circuit, a resistor kept turning brown
over time, in the other it did not. We were getting field returns as a
result of troubleshooting that focused on the brown resistors.

What was the difference? The resistor which did not discolor was resting
on two metal traces which ran under it, the one which discolored, was
resting on the PCB. That tiny amount of heatsinking provided by the
traces was the difference. Obviously, the circuit needed to be
redesigned, but it worked great on the breadboard when it went into
production.

Al

--
There's never enough time to do it right the first time.......
  #10   Report Post  
Old November 25th 03, 02:40 PM
Ban
 
Posts: n/a
Default

Jason Hsu wrote:
|| It's part of a design for a T/R sense circuit for a noise
|| cancellation device.
||
|| I won't bore you with too many details. One thing I noticed in a
|| design I'm looking at is that 1W resistors could be subject to as
|| much as 50W of power apiece during the time it takes for a relay to
|| respond. This response time is 7msec. The overall duty cycle will
|| be low (well under 1%).
||
|| Can the 1W-51 ohm resistors handle this 50 RF volts 0-peak (about 50W
|| PEP) for .007 sec? 50W over .007 seconds is .35 Joules. .35W for 1
|| second is also .35 Joules, which a 1W resistor should have no trouble
|| handling. Can the resistors be damaged during that .007 seconds?
||
|| Also, how much time does it take to damage a toroid? If it can
|| handle X units of flux density continuously, how much flux density
|| can it handle for .007 seconds with a low overall duty cycle (like
|| well under 1%)?
||
|| Jason Hsu, AG4DG
|| usenet AAAAATTTTT jasonhsu.com

I have here some datasheets of Beyschlag MELF-resistors (CMA0204). They take
up to 40W continuous pulses if the pulse length is 200us or shorter. So 2-3
of those should be able to absorb your pulse. They also have non-inductive
types for RF-apps.
--
ciao Ban


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT +1. The time now is 01:44 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017