Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]() "Paul Burridge" wrote in message ... On 4 Dec 2003 17:30:27 -0800, Winfield Hill wrote: As John has said, that's a very low inductance that should not present any problems at such a low power level. But perhaps for a more detailed answer you can tell us the frequencies your coil will experience. At high frequencies skin and proximity effects dominate, and these can be evaluated with an Rac/Rdc ratio. If a ferrite is used its high-frequency core loss can also be modeled as an inductor resistance. Thanks, Win! You're a diamond. John's formulae didn't appear on his post for some reason, but you've given me the info I need to start winding and be slap in the ball park right away. Great. BTW, the factory inductors I have already are only about the size of the newest half-watt resistors, so I was reluctant to chance it. I know things keep getting smaller and somehow seem to defy the laws of physics, but just call me old fashioned. :-) Thanks again. P. -- "I expect history will be kind to me, since I intend to write it." - Winston Churchill Paul, I really don't think you need to wind your own. For example, a Coilcraft 1008CS 180nH part is rated at 620mA rms: http://www.coi1craft.com/1008cs.cfm The "trick" is that the dissipation is a function of the series resistance, which is very low (0.77 ohms) as long as the core doesn't saturate. If you want to get really silly, their "Spring" inductors are rated at 3A rms. Regards Ian |
#2
![]() |
|||
|
|||
![]()
On 4 Dec 2003 17:30:27 -0800, Winfield Hill
wrote: As John has said, that's a very low inductance that should not present any problems at such a low power level. But perhaps for a more detailed answer you can tell us the frequencies your coil will experience. At high frequencies skin and proximity effects dominate, and these can be evaluated with an Rac/Rdc ratio. If a ferrite is used its high-frequency core loss can also be modeled as an inductor resistance. Thanks, Win! You're a diamond. John's formulae didn't appear on his post for some reason, but you've given me the info I need to start winding and be slap in the ball park right away. Great. BTW, the factory inductors I have already are only about the size of the newest half-watt resistors, so I was reluctant to chance it. I know things keep getting smaller and somehow seem to defy the laws of physics, but just call me old fashioned. :-) Thanks again. P. -- "I expect history will be kind to me, since I intend to write it." - Winston Churchill |
#3
![]() |
|||
|
|||
![]()
http://w1.859.telia.com/~u85920178/begin/calc-00.htm
About 1/2 way down the pageare calculators that may be of interest. |
#4
![]() |
|||
|
|||
![]()
Paul Burridge wrote:
Hi all, I need to wind 180nH inductor for a parallel tuned circuit I'm building, since the 180nH factory-made chokes I have don't look up to the job power-handling wise. This coil needs to handle about 90mA p-p/ 500mW maximum dissipation sine current and I've allowed 3 ohms for series resistance. Can anyone give me some steer on dimensions, number of turns, core type and so on? Thanks, Here are the basic formulas for air core coils. 3 ohms sounds pretty high for such a small inductance. -- John Popelish |
#5
![]() |
|||
|
|||
![]()
For a very complete analysis of performance, including power handling
capacity, of solenoid coils of all proportions, dimensions and number of turns, download in a few seconds and run immediately program SOLNOID3 from website below. ---- .................................................. .......... Regards from Reg, G4FGQ For Free Radio Design Software go to http://www.btinternet.com/~g4fgq.regp .................................................. .......... |
#6
![]() |
|||
|
|||
![]()
Paul Burridge wrote...
I need to wind 180nH inductor for a parallel tuned circuit I'm building, since the 180nH factory-made chokes I have don't look up to the job power-handling wise. This coil needs to handle about 90mA p-p / 500mW maximum dissipation sine current and I've allowed 3 ohms for series resistance. Can anyone give me some steer on dimensions, number of turns, core type and so on? Thanks, As John has said, that's a very low inductance that should not present any problems at such a low power level. But perhaps for a more detailed answer you can tell us the frequencies your coil will experience. At high frequencies skin and proximity effects dominate, and these can be evaluated with an Rac/Rdc ratio. If a ferrite is used its high-frequency core loss can also be modeled as an inductor resistance. Do you have any special size constraints? Unless you really need a miniature size, an air core may be best for 180nH. You can use the Wheeler equation to experiment with different coil designs. I'll add some new grist for the mill, with a copy of a portion of a posting I made 28 Dec 1997, about air-coil inductance equations. ------------------------------------------------------------------- Throughout the discussion we'll use the same dimensional system, based on the drawing below. Here and in the 14 formulas below, N = turns, a = mean radius, b = length, and c = winding thickness, and all are in inches, unless otherwise stated. length |------ b --------| --- ,-----------------, c | cross section | ------------ a = winding mean radius --- '-----------------' a | __________________________ | axis D = 2a ,-----------------, | | cross section | -------- '------------\----' \ solenoid coil layout N turns -------- [ snip five formulas and discussion ] To simplify our lives, Wheeler empirically derived his popular single-layer solenoid equation, using Nagaoka's equation and tables. Wheeler's equation is shown below in two different ways. a N^2 a^2 N^2 / 10 b (6) L = ---------- = -------------- uH / inch 9 + 10 b/a 1 + 0.9 a/b Wheeler says this equation is accurate to about 1% for long coils, or any coils with (b/a 0.8). [Confirmed with extensive measurements I made and posted on s.e.d.] It's easy to solve this equation for N. A simple re-arrangement adds the concept of winding pitch. This can be very useful, in part because a low-winding-height multilayer coil can be treated as a single-layer coil with a higher winding pitch. a^2 p N 1 (7) L = -------- * ---------------- uH / inch 10 1 + 0.9 a p / N Here p is my turn-density pitch parameter, in turns/inch. Incidentally, this makes clear that for long coils, once you pick a coil-winding pitch, the inductance scales by N, rather than by N^2. Of course, the length scales as well. Now solving for N isn't as easy. I get, 10 b (8) N =~ ----- ( 1 + 9 a^3 p^2 / 100 L ) turns p a^2 Alan Fowler pointed out a version of Wheeler's equation, claimed more accurate, in F. Langford-Smith's "The Radiotron Designer's Handbook," 1942. In the 3rd edition only, the work of Esnault-Pelterie is detailed, a Frenchman who followed the "des savants japonais" (i.e. Nagaoaka) for his derivation of a simple Wheeler-like formula with a claimed accuracy of 0.1% for values of diameter/length between 0.2 and 1.5. Rearranging, a^2 N^2 / 9.972 b (9) L = -------------------- uH / inch 0.9949 + 0.9144 (a/b) [ snip more formulas and stuff ] ------------------------------------------------------------------- OK, there you have a small panaply of equation forms to select from. (7) is easier to use than it appears at first glance. Let's design a coil for you. We'll pick wire size #22, which has a diameter of 0.020 inches, prompting us to pick a winding-spacing of 0.04 inches, or a 25 turns/in pitch. Inspired by a small art brush in my pencil cup, we'll pick a coil diameter of 0.2", so equation (7) reduces to .. 0.01 25 N 1 .. L = --------- * ------------------ uH / inch .. 10 1 + 0.9 0.1 25 / N .. .. 1 .. = 0.025" N * ------------ uH / in .. 1 + 2.25/N This formula is more simple than it appears, because the second term approaches unity for coils of more than 10 - 20 turns. The first term says a 180nH coil requires about 180/25 = 7 turns, so we'll try N = 9, and get L = 225nH * 0.8 = 180nH, right on the money. That's a 9-turn coil 0.2" in diameter and 0.36" long. It uses less than six inches of wire, has a DC resistance of about 0.008 ohms, and can handle very high DC currents. Plugging our coil into equation (6) as a test, we have a = 0.1" and b = 0.36" and N = 9, so we get L = 8.1 / (9 + 36) = 0.180 uH, bingo. Thanks, - Win whill_at_picovolt-dot-com |
#7
![]() |
|||
|
|||
![]()
http://w1.859.telia.com/~u85920178/begin/calc-00.htm
About 1/2 way down the pageare calculators that may be of interest. |
#8
![]() |
|||
|
|||
![]()
I need to wind 180nH inductor for a parallel tuned circuit I'm
building, Paul- I suggest you find some stiff wire, wind about five turns using a pencil as a form, and stretch or compress it to tune the circuit. If you want a more stable inductor, then wind it on a high value, one or two watt resistor. Once the desired inductance is set, put some kind of varnish (coil dope) on it to hold the winding in place. 73, Fred, K4DII |
#9
![]() |
|||
|
|||
![]()
I need to wind 180nH inductor for a parallel tuned circuit I'm
building, Paul- I suggest you find some stiff wire, wind about five turns using a pencil as a form, and stretch or compress it to tune the circuit. If you want a more stable inductor, then wind it on a high value, one or two watt resistor. Once the desired inductance is set, put some kind of varnish (coil dope) on it to hold the winding in place. 73, Fred, K4DII |
#10
![]() |
|||
|
|||
![]()
In article , Bill Turner
writes: On Sun, 07 Dec 2003 13:55:35 +0200, Paul Keinanen wrote: One can still argue that the inductance and inductive reactance are as well as the capacitance and the capacitive reactance are still there as separate entities, but we can not measure them separately from terminals of the coil. Thus, this is an artefact of the measurement method. Not only can you *not* measure them separately, they can not be physically separated either, since the parasitic capacitance is always present between adjacent windings. I would not call it an artifact of the measurement method, but rather an artifact of the coil itself. Nonsense. General Radio had a nice little formula way back before 1956 for finding the distributed capacity of an inductor. It was published in the Green Bible (ITT Reference Data for Radio Engineers, small format, dark green hard cover). I used it years ago and earlier this year and many times between. Write on the whiteboard 100 times: Inductance does not change with frequency...reactance changes with frequency. Now if someone actually wants to WIND COILS, I have a little aid for tiny ones wound on common screw thread forms that was published in Ham Radio magazine. Has measured Qs over frequency as well as basic inductance. I'll attach it to private e-mail (PDF) to anyone that requests it. Using common screw thread formers and solid wire allows a good repeatability between bench and application. Forms can be anything from a 4-40 bolt to a common screw-thread lamp base. Folks in here are getting too wound up...and coiling to strike. :-) Len Anderson retired (from regular hours) electronic engineer person |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
Coils or specifications needed for Heathkit GD-1B Grid Dip Meter. | Equipment | |||
National SW-3 coil winding data | Boatanchors | |||
phasing coils | Antenna |