Home 
Search 
Today's Posts 
#1




[KB6NU] From the engineering magazines: scope measurements, opamp BW, travellingwave tubes
KB6NU's Ham Radio Blog /////////////////////////////////////////// From the engineering magazines: scope measurements, opamp BW, travellingwave tubes Posted: 13 Jan 2016 09:07 AM PST http://feedproxy.google.com/~r/kb6nu...m_medium=email Make great oscilloscope measurements.Â*In oscilloscopes today, making a good signal measurement is easy. However, making a great measurement takes some expertise. Op amp basics: Small signal bandwidth and overall performance.Â*It is rare to find an op amp data sheet without a bandwidth number on the front page. Because small signal bandwidth is the largest number, this is usually the number featured most prominently. A good question, though, is how important is this number and how does it relate to other device performance metrics? The quest for the ultimate vacuum tube.Â*In July 1962, the Telstar 1 satellitetook an enormous leap toward the globally connected world we now take for granted. It relayed from space, for the first time ever, live television images and telephone calls between continents: specifically, a ground station in Andover, Maine, and other stations in England and France. It accomplished this feat thanks to a microwave repeater that had at its heart a slight but powerful vacuum device known as a travelingwave tube. The 30centimeterlong,glasswalled electron tube was at the time the only device capable of boosting a broadband television signal with enough power to cross an ocean. Solidstate devices just werenâ€™t up to the task.Â*More than a half century later, travelingwavetube amplifiers stillÂ*dominate satellite communication. Thatâ€™s rightâ€”yourÂ*ultrahighdefinition satellite TV and satellite radio come to you courtesy of vacuum tubes in space. The post From the engineering magazines: scope measurements, opamp BW, travellingwave tubes appeared first on KB6NUs Ham Radio Blog. /////////////////////////////////////////// 2016 Extra Class Study Guide: E5B  Time constants, phase relationships, admittance, susceptance Posted: 12 Jan 2016 12:08 PM PST http://feedproxy.google.com/~r/kb6nu...m_medium=email E5B Time constants and phase relationships: RLC time constants; definition; time constants in RL and RC circuits; phase angle between voltage and current; phase angles of series RLC; phase angle of inductance vs susceptance; admittance and susceptance When you put a voltage across a capacitor, current will flow into the capacitor and the voltage across the capacitor will increase until the voltage across it reaches the value of the supply voltage. This is not a linear function. By that I mean that the voltage will increase quite rapidly at first, but the rate of increase will slow as time goes on. To see how this works, letâ€™s consider the RC time constant. The time constant of an RC circuit is equal to the resistance in the circuit times the capacitance, or simply R x C. For example, the time constant of a circuit having two 220microfarad capacitors and two 1megohm resistors, all in parallel is 220 seconds. (E5B04) The equivalent resistance of two 1 MÎ© resistors in parallel is 500 kÎ©. The equivalent capacitance of two 220 Î¼F capacitors in parallel is 440 Î¼F. The time constant is RxC = 440 x 106 x 500 x 103 = 220 s. One time constant is the term for the time required for the capacitor in an RC circuit to be charged to 63.2% of the applied voltage. (E5B01) Similarly, one time constant is the term for the time it takes for a charged capacitor in an RC circuit to discharge to 36.8% of its initial voltage. (E5B02) A capacitor charges to 86.5% of the applied voltage, or discharges to 13.5% of the starting voltgage, after two time constants. After three time constants, a capacitor is charged up to 95% of the applied voltage or discharged to 5% of the starting voltage. Phase relationships In an AC circuit, with only resistors, the voltage and current are in phase. What that means is that the voltage and current change in lock step. When the voltage increases, the current increases. When the voltage decreases, the current decreases. When there are capacitors and inductors in an AC circuit, however, the phase relationship between the voltage and current changes. Specifically, the relationship between the current through a capacitor and the voltage across a capacitor is that the current leads voltage by 90 degrees. (E5B09) We could also say that the voltage lags the current by 90 degrees. See figure below. What that means is that the current through a capacitor increases and decreases before the voltage across a capacitor increases and decreases. We say that the current leads the voltage by 90 degrees because it starts increasing onequarter of a cycle before the voltage starts increasing. The current leads the current in an AC circuit with a capacitive reactance. The relationship between the current through an inductor and the voltage across an inductor is that the voltage leads current by 90 degrees. (E5B10) We could also say that the current lags the voltage. See figure below. What that means is that the voltage across an inductor increases and decreases before the current through the inductor increases and decreases. We say that the voltage leads the voltage by 90 degrees because it starts increasing onequarter of a cycle before the current starts increasing. The voltage leads the current in a circuit with inductive reactance. When there are resistors as well as a capacitor or inductor or both in a circuit, the relationship is a little more complicated. Letâ€™s look at what happens in the series RLC circuit shown below. A series RLC circuit contains an inductive reactance, a capacitive reactance, and a resistance all in series. In this circuit, there is resistance, capacitive reactance, and inductive reactance. The reactances subtract from one another. If the capacitive reactance is greater than the inductive reactance, the net reactance will be capacitive. If the inductive reactance is greater than the capacitive reactance, the net reactance will be inductive. The resistance and the reactance add to one another, but they add vectorially. The reason for this is that the reactance will be 90 degrees out of phase with the resistance. This is shown in the figure below. Resistance and reactance add vectorially. The magnitude of the impedance, Z, will be equal to âˆš(R2 + X2) and the tangent of the phase angle will be equal to X/R. Letâ€™s see how this works in several examples. If XC is 500 ohms, R is 1 kilohm, and XL is 250 ohms, the phase angle between the voltage across and the current through the series RLC circuit is 14.0 degrees with the voltage lagging the current. (E5B07) Hereâ€™s how to calculate that: X = XC XL = 250 Î© (capacitive) phase angle = tan1 (250/1000) = 14 degrees. and because the reactance is capacitive, the voltage will lag the current. If XC is 100 ohms, R is 100 ohms, and XL is 75 ohms, the phase angle between the voltage across and the current through the series RLC circuit is 14 degrees with the voltage lagging the current. (E5B08) Hereâ€™s the calculation: X = XC XL = 25 Î© (capacitive) phase angle = tan1 (25/100) = 14 degrees. and because the reactance is capacitive, the voltage lags the current. If XC is 25 ohms, R is 100 ohms, and XL is 50 ohms, the phase angle between the voltage across and the current through the series RLC circuit is 14 degrees with the voltage leading the current. (E5B11) Hereâ€™s the calculation: X = XL XC = 25 Î© (inductive) phase angle = tan1 (25/100) = 14 degrees. and because the reactance is inductive, the voltage leads the current. Susceptance and admittance While we most often work with reactances and impedances in amateur radio, in some cases, its more advantageous to work with susceptance and admittance. Susceptance is the inverse of reactance.(E5B06) The unit of susceptance is the mho. B is the letter is commonly used to represent susceptance. (E5B13) In mathematical terms, B = 1/X When the magnitude of a reactance is converted to a susceptance, the magnitude of the susceptance is the reciprocal of the magnitude of the reactance. (E5B05) When the phase angle of a reactance is converted to a susceptance, the sign is reversed. (E5B03) Admittance is the inverse of impedance. (E5B12) The unit of admittance is the Siemens, and like impedance, is a complex quantity. The post 2016 Extra Class Study Guide: E5B â€“ Time constants, phase relationships, admittance, susceptance appeared first on KB6NUs Ham Radio Blog. 
Reply 
Thread Tools  Search this Thread 
Display Modes  


Similar Threads  
Thread  Forum  
[KB6NU] From the trade magazines: AC safety, strain relief, woodpeckers  Dx  
Question 1/4 Wave Ground Plane Measurements  Antenna  
Wireless World & Radio Engineering magazines  Homebrew  
FS: Boonton Measurements Model 72 Square Wave Generator  Boatanchors  
FS: Boonton Measurements Model 72 Square Wave Generator  Boatanchors 