Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Tom wrote:
wrote: So I could make a short wave radio out of a laptop using this software? You can make an Extremely Low Frequency radio out of a computer, tunable across the bandwidth of its sound system. You could tune up to about 1/2 the sampling frequency of the sound systems analog-to-digital converter. Typical sample rates are 48kHz but high end systems go up to 192 kHz so the tuning range would be up to 24 kHz and 96 kHz respectively, provided the computer can execute the SDR DSP software fast enough. If you connected an antenna to the microphone input, you might hear something. To tune higher frequencies, you can use a conventional superhet receiver as a tunable downconverter, connecting its last IF (if higher than the computer's audio input range) to a fixed downconverter, e.g., from 455 kHz to 12 kHz. Err, Ummm, well, yeah, in THEORY you could. In practice you'll need to decouple your computer from the antenna pretty well. This means you'll need a very high Q antenna with a very low noise amplifier to isolate it, and a very well isolated DC supply to power the amplifier. If those things exist, you can build your very own VLF receiver from a sound card. In fact, if your sound card can manage a sample rate of at least 120 kSamples/second then you could use it to tune in WWVB at 60 kHz or perhaps the German equivalent at 77 kHz if you can manage to sample at twice that rate. Other than WWVB, I don't think much is still down there. The earth's ionosphere resonates at about 7 Hz if memory serves, so that might be a lower limit to what you might want to try monitoring. The Omega system was decommissioned years ago, though I've heard rumors that some parts of it might still be in service in some corners of the world. Finally, if there are any old FDM coaxial systems nearby, you might detect some leakage from their traffic (I doubt there are any who still use this method to trunk VF traffic together, but if there are a few, you might still hear it) And yes, a very few radios have a third IF at 50 kHz which you could use such a sound card with. That experiment has potential. 73, Jake Brodsky Amateur Radio Station AB3A |
#2
![]() |
|||
|
|||
![]() Jake Brodsky wrote: Tom wrote: wrote: So I could make a short wave radio out of a laptop using this software? You can make an Extremely Low Frequency radio out of a computer, tunable across the bandwidth of its sound system. You could tune up to about 1/2 the sampling frequency of the sound systems analog-to-digital converter. Typical sample rates are 48kHz but high end systems go up to 192 kHz so the tuning range would be up to 24 kHz and 96 kHz respectively, provided the computer can execute the SDR DSP software fast enough. If you connected an antenna to the microphone input, you might hear something. To tune higher frequencies, you can use a conventional superhet receiver as a tunable downconverter, connecting its last IF (if higher than the computer's audio input range) to a fixed downconverter, e.g., from 455 kHz to 12 kHz. Err, Ummm, well, yeah, in THEORY you could. In practice you'll need to decouple your computer from the antenna pretty well. This means you'll need a very high Q antenna with a very low noise amplifier to isolate it, and a very well isolated DC supply to power the amplifier. If those things exist, you can build your very own VLF receiver from a sound card. In fact, if your sound card can manage a sample rate of at least 120 kSamples/second then you could use it to tune in WWVB at 60 kHz or perhaps the German equivalent at 77 kHz if you can manage to sample at twice that rate. Other than WWVB, I don't think much is still down there. The earth's ionosphere resonates at about 7 Hz if memory serves, so that might be a lower limit to what you might want to try monitoring. The Omega system was decommissioned years ago, though I've heard rumors that some parts of it might still be in service in some corners of the world. Finally, if there are any old FDM coaxial systems nearby, you might detect some leakage from their traffic (I doubt there are any who still use this method to trunk VF traffic together, but if there are a few, you might still hear it) And yes, a very few radios have a third IF at 50 kHz which you could use such a sound card with. That experiment has potential. 73, Jake Brodsky Amateur Radio Station AB3A Yeah, everything looks easy in theory. Computers are serious noise machines. You've probably seen this website: http://www.vlf.it/ Think of painting a room. Isn't 90% of the work the preparation? Well, in signal analysis, conditioning the signal is a serious chunk of the work. Once you have something clean, then digital analysis can be done. If you do build any of those designs on vlf.it, you may want to investigate better (lower noise) op amps. |
#3
![]() |
|||
|
|||
![]()
Jake Brodsky wrote:
Tom wrote: wrote: So I could make a short wave radio out of a laptop using this software? You can make an Extremely Low Frequency radio out of a computer, tunable across the bandwidth of its sound system. You could tune up to about 1/2 the sampling frequency of the sound systems analog-to-digital converter. Typical sample rates are 48kHz but high end systems go up to 192 kHz so the tuning range would be up to 24 kHz and 96 kHz respectively, provided the computer can execute the SDR DSP software fast enough. If you connected an antenna to the microphone input, you might hear something. To tune higher frequencies, you can use a conventional superhet receiver as a tunable downconverter, connecting its last IF (if higher than the computer's audio input range) to a fixed downconverter, e.g., from 455 kHz to 12 kHz. Err, Ummm, well, yeah, in THEORY you could. In practice you'll need to decouple your computer from the antenna pretty well. This means you'll need a very high Q antenna with a very low noise amplifier to isolate it, and a very well isolated DC supply to power the amplifier. If those things exist, you can build your very own VLF receiver from a sound card. In fact, if your sound card can manage a sample rate of at least 120 kSamples/second then you could use it to tune in WWVB at 60 kHz or perhaps the German equivalent at 77 kHz if you can manage to sample at twice that rate. [snip] And yes, a very few radios have a third IF at 50 kHz which you could use such a sound card with. That experiment has potential. 73, Jake Brodsky Amateur Radio Station AB3A The point of my message was that you cannot make a SW radio out of a laptop alone ( the question he asked) but could make a VLF receiver out of a laptop that could be used with a downconverter to tune SW. Many have done so. The downconverter is typically a superhet radio whose last IF is downconverted through an add-on to the audio frequency range. The audio frequency laptop receiver need not have especially high sampling frequency or sample size when used with a downconverter for SW. A 10 kHz wide passband is adequate for most transmission modes and is readily provided by a 48 kHz sample rate - even 24 kHz could be enough. Because the front end tuner has AGC and can regulate levels into the sound card, the latter's A/D converter having something approaching 16 bit resolution will have more than adequate dynamic range - even 8-bits could be sufficient. Of course, the state of the art is for higher resolution A/D converters and higher sampling rates for direct conversion for DSP. As discussed elsewhere, great care must be taken in controlling interference from the SDR to itself, via the antenna or other unintended coupling. Tom |
#4
![]() |
|||
|
|||
![]()
"Tom" wrote:
The point of my message was that you cannot make a SW radio out of a laptop alone yes that was my question And now I'm clear on that...thanks! I've just been debating buying a small portable SW radio as I've gotten completely rid of TV and cable TV and thinking maybe SW radio might be a good replacement for it. Sounds like it best for me to get a dedicated stand lone small SW radio I mistakenly assumed I could put some software on my laptop and make a SW radio out it |
#6
![]() |
|||
|
|||
![]() Tom wrote: Jake Brodsky wrote: Tom wrote: wrote: So I could make a short wave radio out of a laptop using this software? You can make an Extremely Low Frequency radio out of a computer, tunable across the bandwidth of its sound system. You could tune up to about 1/2 the sampling frequency of the sound systems analog-to-digital converter. Typical sample rates are 48kHz but high end systems go up to 192 kHz so the tuning range would be up to 24 kHz and 96 kHz respectively, provided the computer can execute the SDR DSP software fast enough. If you connected an antenna to the microphone input, you might hear something. To tune higher frequencies, you can use a conventional superhet receiver as a tunable downconverter, connecting its last IF (if higher than the computer's audio input range) to a fixed downconverter, e.g., from 455 kHz to 12 kHz. Err, Ummm, well, yeah, in THEORY you could. In practice you'll need to decouple your computer from the antenna pretty well. This means you'll need a very high Q antenna with a very low noise amplifier to isolate it, and a very well isolated DC supply to power the amplifier. If those things exist, you can build your very own VLF receiver from a sound card. In fact, if your sound card can manage a sample rate of at least 120 kSamples/second then you could use it to tune in WWVB at 60 kHz or perhaps the German equivalent at 77 kHz if you can manage to sample at twice that rate. [snip] And yes, a very few radios have a third IF at 50 kHz which you could use such a sound card with. That experiment has potential. 73, Jake Brodsky Amateur Radio Station AB3A The point of my message was that you cannot make a SW radio out of a laptop alone ( the question he asked) but could make a VLF receiver out of a laptop that could be used with a downconverter to tune SW. Many have done so. The downconverter is typically a superhet radio whose last IF is downconverted through an add-on to the audio frequency range. The audio frequency laptop receiver need not have especially high sampling frequency or sample size when used with a downconverter for SW. A 10 kHz wide passband is adequate for most transmission modes and is readily provided by a 48 kHz sample rate - even 24 kHz could be enough. Because the front end tuner has AGC and can regulate levels into the sound card, the latter's A/D converter having something approaching 16 bit resolution will have more than adequate dynamic range - even 8-bits could be sufficient. Of course, the state of the art is for higher resolution A/D converters and higher sampling rates for direct conversion for DSP. As discussed elsewhere, great care must be taken in controlling interference from the SDR to itself, via the antenna or other unintended coupling. Tom All you are really doing is using the PC for the demod, which is technically not a software defined radio. Mind you it can be done, but it is really just an analog radio with some DSP. |
#8
![]() |
|||
|
|||
![]() Tom wrote: wrote: Tom wrote: Jake Brodsky wrote: Tom wrote: wrote: So I could make a short wave radio out of a laptop using this software? You can make an Extremely Low Frequency radio out of a computer, tunable across the bandwidth of its sound system. You could tune up to about 1/2 the sampling frequency of the sound systems analog-to-digital converter. Typical sample rates are 48kHz but high end systems go up to 192 kHz so the tuning range would be up to 24 kHz and 96 kHz respectively, provided the computer can execute the SDR DSP software fast enough. If you connected an antenna to the microphone input, you might hear something. To tune higher frequencies, you can use a conventional superhet receiver as a tunable downconverter, connecting its last IF (if higher than the computer's audio input range) to a fixed downconverter, e.g., from 455 kHz to 12 kHz. Err, Ummm, well, yeah, in THEORY you could. In practice you'll need to decouple your computer from the antenna pretty well. This means you'll need a very high Q antenna with a very low noise amplifier to isolate it, and a very well isolated DC supply to power the amplifier. If those things exist, you can build your very own VLF receiver from a sound card. In fact, if your sound card can manage a sample rate of at least 120 kSamples/second then you could use it to tune in WWVB at 60 kHz or perhaps the German equivalent at 77 kHz if you can manage to sample at twice that rate. [snip] And yes, a very few radios have a third IF at 50 kHz which you could use such a sound card with. That experiment has potential. 73, Jake Brodsky Amateur Radio Station AB3A The point of my message was that you cannot make a SW radio out of a laptop alone ( the question he asked) but could make a VLF receiver out of a laptop that could be used with a downconverter to tune SW. Many have done so. The downconverter is typically a superhet radio whose last IF is downconverted through an add-on to the audio frequency range. The audio frequency laptop receiver need not have especially high sampling frequency or sample size when used with a downconverter for SW. A 10 kHz wide passband is adequate for most transmission modes and is readily provided by a 48 kHz sample rate - even 24 kHz could be enough. Because the front end tuner has AGC and can regulate levels into the sound card, the latter's A/D converter having something approaching 16 bit resolution will have more than adequate dynamic range - even 8-bits could be sufficient. Of course, the state of the art is for higher resolution A/D converters and higher sampling rates for direct conversion for DSP. As discussed elsewhere, great care must be taken in controlling interference from the SDR to itself, via the antenna or other unintended coupling. Tom All you are really doing is using the PC for the demod, which is technically not a software defined radio. Mind you it can be done, but it is really just an analog radio with some DSP. Technically, it is a VLF SDR with an analog downconverter. By itself, it can receive wireless energy, tunes over a spectrum of less than 1/2 the sample rate, has variable IF bandwidth, can demodulate many modes, does noise reduction, all through software. How is that not a software defined radio? Practical SDR's are going to have analog elements in them, if the modulation is to be interpreted by one's hearing. Tom In the strict sense, the SDRs are ADCs and massive DSP. You wouldn't have analog IFs because that restricts the BW of the signal. That is, nothing can be wider than the IF. A true SDR could demod multiple signals at one time. |
#9
![]() |
|||
|
|||
![]() wrote: Tom wrote: wrote: Tom wrote: [snip] The point of my message was that you cannot make a SW radio out of a laptop alone ( the question he asked) but could make a VLF receiver out of a laptop that could be used with a downconverter to tune SW. Many have done so. The downconverter is typically a superhet radio whose last IF is downconverted through an add-on to the audio frequency range. The audio frequency laptop receiver need not have especially high sampling frequency or sample size when used with a downconverter for SW. A 10 kHz wide passband is adequate for most transmission modes and is readily provided by a 48 kHz sample rate - even 24 kHz could be enough. Because the front end tuner has AGC and can regulate levels into the sound card, the latter's A/D converter having something approaching 16 bit resolution will have more than adequate dynamic range - even 8-bits could be sufficient. Of course, the state of the art is for higher resolution A/D converters and higher sampling rates for direct conversion for DSP. As discussed elsewhere, great care must be taken in controlling interference from the SDR to itself, via the antenna or other unintended coupling. Tom All you are really doing is using the PC for the demod, which is technically not a software defined radio. Mind you it can be done, but it is really just an analog radio with some DSP. Technically, it is a VLF SDR with an analog downconverter. By itself, it can receive wireless energy, tunes over a spectrum of less than 1/2 the sample rate, has variable IF bandwidth, can demodulate many modes, does noise reduction, all through software. How is that not a software defined radio? Practical SDR's are going to have analog elements in them, if the modulation is to be interpreted by one's hearing. Tom In the strict sense, the SDRs are ADCs and massive DSP. You wouldn't have analog IFs because that restricts the BW of the signal. That is, nothing can be wider than the IF. A true SDR could demod multiple signals at one time. From Wikipedia and what looks like an authoritatively written article: "A software-defined radio (SDR) system is a radio communication system which uses software for the modulation and demodulation of radio signals." From the ARRL Technology Task Force Report 2001 http://www.arrl.org/announce/reports-01/tt.html: "Most software receivers have an analog front end consisting of band-pass filtering, a low-noise RF amplifier to set a low system noise level, a local oscillator and mixer to heterodyne the signal to an intermediate frequency (IF) where analog-to-digital (A/D) conversion, digital filtering and demodulation takes place. Recently, however, there are some software receivers that perform A/D conversion immediately after the antenna." Your "strict sense" and "true SDR" interpretations are much too narrow and illogical. that's like saying a radio is not a radio unless it can receive the highest possible frequency. A crystal radio is still a radio; a VLF software defined radio is very much a software defined radio whether it demodulates one or many signals. Neither needs to use state of the art technology to continue to be so defined. A notebook computer capable of demodulating via software a VLF radio signal coupled to its sound card input is therefore a radio receiver defined by software. Putting a downconverter in front of either the crystal radio or the software defined radio simply adds the adjective "superheterodyne" to their descriptors. These descriptors define the sub-classes of radios to which a particular implementation belongs; the sub-class of radios called software defined radios has many sub-classes of its own, including both purpose built hardware/software systems and general purpose hardware such as a personal computer running SDR software. Tom |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Comparison of six portable radios | Broadcasting | |||
export cb radios | Policy | |||
FS MOTOROLA RADIO'S | Equipment | |||
FS MOTOROLA RADIOS HT1000'S , VISAR'S ,& MAXTRAC'S | Equipment | |||
wtd: EF Johnson Challenger Mobile Radios and Remote Heads | Equipment |