View Single Post
  #5   Report Post  
Old May 14th 05, 10:44 PM
Cecil Moore
 
Posts: n/a
Default

Reg Edwards wrote:
The number one reason for attenuation being higher is because the
conductor diameter is smaller and, as a consequence, its resistance is
higher.


On that we can disagree. The *number one* reason for attenuation
being higher is because, in a matched feedline, the losses are
proportional to the square of the current, and the current is
inversely proportional to the characteristic impedance of the
feedline, i.e. given #20 wire, a Zo-matched 75 ohm feedline
will have Sqrt(600/75) times the I^2*R losses of a matched 75
ohm feedline. Proof:

SQRT(100w/75) = SQRT(600/75)*SQRT(100w/600)

SQRT(100w/75)/SQRT(600/75) = SQRT(100w/600)

100w/600 = 100w/600

Given that the center conductor of RG-213 is the same size wire as
a parallel feedline, a *very* large percentage of the difference
in matched line dissipation is due to the Z0. (I don't know the
size of the center wire in RG-213 but it looks like #14 or #12.)
I don't think the RG-213 center conductor is at all smaller.
--
73, Cecil http://www.qsl.net/w5dxp


----== Posted via Newsfeeds.Com - Unlimited-Uncensored-Secure Usenet News==----
http://www.newsfeeds.com The #1 Newsgroup Service in the World! 100,000 Newsgroups
---= East/West-Coast Server Farms - Total Privacy via Encryption =---