Thread: Magnetic Loops
View Single Post
  #24   Report Post  
Old October 20th 15, 12:55 AM posted to rec.radio.amateur.antenna
amdx[_3_] amdx[_3_] is offline
external usenet poster
 
First recorded activity by RadioBanter: Aug 2013
Posts: 154
Default Magnetic Loops

On 10/19/2015 2:14 PM, rickman wrote:

To be a bit simplistic, the amount of signal captured is proportional
to the loop area; the number of turns has little to no effect on that.


I'm pretty sure that is not correct. The signal strength is
proportional to the number of turns *and* the loop area. I will have to
dig out my notes on this, but some factors (like Q) even out with
various changes in antenna parameters such as number of turns, loop
size, etc. But signal strength is proportional to the area of the loop
and the number of turns.

From
http://www.lz1aq.signacor.com/docs/f..._loop_engl.htm

E = 2pi w S µR e / λ
λ is the wavelength in meters
w - the number of ML turns;
S – is the area of the windings in m2;
μR is the effective magnetic permeability of the ferrite rod SML. μR is
always less than the permeability of the material used and depends from
the size, geometry and the way the windings are constructed. μR = 1 for
aerial loops.

The product:
А = w μR S (3)
is called effective area of the SML.


Correct me if I'm wrong,
A 1 meter square loop with 5 turns would equal 5 square meters.
A = 5 sq. meters.

A 2.23 meter x 2.23 meter 1 turn loop would equal 5 square meters.
A = 5 sq. meters.

A 5 meter x 5 meter 1 turn loop with a series inductor would equal 25
sq. meters.
A = 25 Sq. meters.

A 5 times increase in A (S) means about a 7db increase in signal
strength. (minus losses caused by series inductor)

Does that all seem right?

Mikek