Home |
Search |
Today's Posts |
#23
![]() |
|||
|
|||
![]()
On 9 Mar, 22:13, (John E. Davis) wrote:
On Fri, 09 Mar 2007 16:45:31 GMT, Dave wrote: Gauss' Law is for static electric charges and fields. It is usually used for problems in electrostatics, but it is not confined to such problems. The differential form of it is just one of the Maxwell equations: div E(x,t) = 4\pi\rho(x,t) Integrate it over a fixed surface and you get the integral form, which is Gauss's law. It is valid with time-dependent charge densities and time-dependent electric fields. --John John, you have hit it on the nose. It is the logic that is important and that logic applies for a resonant array in situ inside a closed border whether time is variant or otherwise. The importantant point of the underlying logic that all inside the arbitary border must be in equilibrium at the cessation of time because the issue is not the static particles but of the flux. Period Thus the very reason for a conservative field in that it is able to project static particles in terms of time if time was added. For static particles time is not involved therefore ALL vectors are of ZERO length and direction is an asumption based on the action if and when time is added. John, you included time but did not mention time variant, was this for a reason? I have specifically use time variance since that enclosed within the border is an array in equilibrium from which the conservative field is drawn from. I am so pleased that some one came along that concentrated on the logic and not the retoric and abuse. Art |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Gaussian antenna aunwin | Antenna | |||
Gaussian equilibrium | Antenna | |||
Gaussian law and time varying fields | Antenna | |||
A gaussian style radiating antenna | Antenna | |||
FA: ELGENCO 602A GAUSSIAN NOISE GENERATOR- Weird! @$10 | Equipment |