Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
In article ,
Don Bowey wrote: On 7/5/07 10:27 PM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/5/07 12:00 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 8:42 PM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 10:16 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated The questions I posed were not about AM. The subject could have been viewed as DSB but that wasn't the specific intent either. What was the subject of your question? Copying from my original post: Suppose you have a 1 MHz sine wave whose amplitude is multiplied by a 0.1 MHz sine wave. What would it look like on an oscilloscope? What would it look like on a spectrum analyzer? Then suppose you have a 1.1 MHz sine wave added to a 0.9 MHz sine wave. What would that look like on an oscilloscope? What would that look like on a spectrum analyzer? So the first (1) is an AM question and the second (2) is a non-AM question...... What is the difference between AM and DSB? AM is a process. DSB (double sideband), with carrier, is it's most simple result. DSB without carrier (suppressed carrier dsb) requires using, at least, a balanced mixer as the AM multiplier. And requires, for proper reception, that a carrier be recreated at the receiver which has not only the amplitude of the original, but also its exact phase. Absent some sort of "pilot" to get things synchronized, this makes reception very difficult. Isaac |
Thread Tools | Search this Thread |
Display Modes | |
|
|