Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]() "Rich Grise" wrote in message news ![]() Sorry, John - while the ear's amplitude response IS nonlinear, it does not act as a mixer. "Mixing" (multiplication) occurs when a given nonlinear element (in electronics, a diode or transistor, for example) is presented with two signals of different frequencies. But the human ear doesn't work in that manner - there is no single nonlinear element which is receiving more than one signal. Sure there is - the cochlea. (well, the whole middle ear/inner ear system.) Nope - the point had to do with the inner workings of the cochlea. You can't consider it as a single element, as the inner workings consists of what are essentially thousands of very narrowband individual sensors. There is no *single* nonlinear element in which mixing of, say, the hypothetical 300 Hz and 400 Hz tones would take place. John responded that the eardrum (typmanic membrane) would act as such an element, but I would suggest that any mixing which might in theory go on here is not a signifcant factor in how we perceive such tones. The evidence for this is obvious - if presented with, say, a pure 440 Hz "A" from a tuning fork, and the note from the slightly flat instrument we're trying to tune (let's say 438 Hz), we DO hear the 2 Hz "beat" that results from the interference (in the air) between these two sounds. What we do NOT hear to any significant degree is the 878 Hz sum that would be expected if there were much contribution from a multiplicative ("mixing") process. Bob M. |
Thread Tools | Search this Thread |
Display Modes | |
|
|