Home |
Search |
Today's Posts |
#7
![]() |
|||
|
|||
![]()
On Jan 24, 10:33*pm, Roger Sparks wrote:
[snip] By examining this derivation, the reader can see that power and energy is reflected when a wave encounters a discontinuity. *The reader can also see that more power is present on the transmission line than is delivered to the load. This is the conventional phraseology for describing the behaviour at the impedance discontinuity. Allow me to offer a specific example for which this phraseology is inappropriate. Consider a 50 V step function generator with an output impedance of 50 ohms driving a 50 ohm line that is 1 second long terminated in an open circuit. Turn on the generator. A 50 V step propagates down the line. The generator is putting 50 J/s into the line. One second later it reaches the open end and begins propagating backwards. After two seconds it reaches the generator. The voltage at the generator is now 100 V and no current is flowing from the generator into the line. In the 2 seconds, the generator put 100 joules into the line which is now stored in the line. The line is at a constant 100 V and the current is zero everywhere. Computing Pf and Pr will yield 50 W forward and 50 W reflected. And yet no current is flowing anywhere. The voltage on the line is completely static. And yet some will claim that 50 W is flowing forward and 50 W is flowing backwards. Does this seem like a reasonable claim for an open circuited transmission line with constant voltage along its length and no current anywhere? I do not find it so. ...Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Convert reflection coefficient to Z | Antenna | |||
Reflection Coefficient | Antenna | |||
Uses of Reflection Coefficient Bridges. | Antenna | |||
Reflection Coefficient Challenge Solved | Antenna | |||
Derivation of the Reflection Coefficient? | Antenna |