| Home |
| Search |
| Today's Posts |
|
|
|
#1
|
|||
|
|||
|
On Mar 21, 5:03*pm, Roger Sparks wrote:
On Fri, 21 Mar 2008 19:43:12 GMT Cecil Moore wrote: Roger Sparks wrote: Cecil Moore wrote: Roger, do you understand why EE201 professors admonish their students not to try to superpose powers? No, I really don't. * It is because (V1 + V2)^2 usually doesn't equal V1^2+V2^2 because of interference. Keith's addition of powers without taking interference into account is exactly the mistake that the EE201 professors were talking about. One cannot validly just willy-nilly add powers. It is an ignorant/sophomoric thing to do. If we add two one watt coherent waves, do we get a two watt wave? Only in a very special case. For the great majority of cases, we do *NOT* get a two watt wave. In fact, the resultant wave can be anywhere between zero watts and four watts. The concepts behind Keith's calculations are invalid. If you are also trying to willy-nilly add powers associated with coherent waves, your calculations are also invalid. -- 73, Cecil *http://www.w5dxp.com OK, yes, I agree. *It is OK to add powers when you are adding the power used by light bulbs. *It is not OK to willy nilly multiply the voltage or current by the number of bulbs to learn the power used. *You must carefully consider the circuit that connects the bulbs before selecting the proper method of calculating power, especially the possibility that the bulbs may be connected to phased power as in 3 phase or in traveling waves. My analysis used voltages, currents and impedances to compute all the voltages and currents within the circuit. Some were derived using superposition of voltages and currents but most were derived using basic circuit theory (E=IR, Ztot=Z1+Z2, etc.) Having done that, the powers for the three components (the voltage source, resistor, and entrance to the transmission line) in the circuit were computed. These powers were not derived using superposition but by multiplying the current through the component by the voltage across it. This is universally accepted as a valid operation. Having the power functions for each of the component, we can then turn to the conservation of energy principle: The energy in a closed system is conserved. This is the basis for the equation Ps(t) = Prs(t) + Pg(t) This equation says that for the system under consideration (Fig 1-1), the energy delivered by the source is equal to the energy dissipated in the resistor plus the energy delivered to the line. This is extremely basic and satisfies the conservation of energy principle. This is not superposition and any inclusion of cos(theta) terms would be incorrect. The equation Pg(t) = Pf.g(t) + Pr.g(t) is more interesting. The basis for this is superposition. The forward and reverse voltage and current are superposed to derive the actual voltage and current. It would seem invalid to also sum the powers. To me it was a complete surprise that summing the voltages produces the correct total voltages and, at the same time, summing the powers (which are a squared function of the voltage) also produce the correct result. But by starting with the equations used to derive forward and reverse voltage and current, it can be easily shown with appropriate substitution that Ptot is always equal to Pforward + Preverse (Or Pf - Pr if you use the other convention for the direction of the energy flow)s. It simply falls out from the way that Vf and Vr are derived from Vactual and Iactual. So Pg(t) = Pf.g(t) + Pr.g(t) is always true. For any arbitrary waveforms. Inclusion of cos(theta) terms would be incorrect. ...Keith |
|
#2
|
|||
|
|||
|
Keith Dysart wrote:
. . . The equation Pg(t) = Pf.g(t) + Pr.g(t) is more interesting. The basis for this is superposition. The forward and reverse voltage and current are superposed to derive the actual voltage and current. It would seem invalid to also sum the powers. To me it was a complete surprise that summing the voltages produces the correct total voltages and, at the same time, summing the powers (which are a squared function of the voltage) also produce the correct result. But by starting with the equations used to derive forward and reverse voltage and current, it can be easily shown with appropriate substitution that Ptot is always equal to Pforward + Preverse (Or Pf - Pr if you use the other convention for the direction of the energy flow)s. It simply falls out from the way that Vf and Vr are derived from Vactual and Iactual. It only holds true when Z0 is purely real. Of course, when it isn't, time domain analysis becomes very much more cumbersome. But it's not hard to show the problem using steady state sinusoidal analysis, and that's where the cos term appears and is appropriate. So Pg(t) = Pf.g(t) + Pr.g(t) is always true. For any arbitrary waveforms. Inclusion of cos(theta) terms would be incorrect. ...Keith Roy Lewallen, W7EL |
|
#3
|
|||
|
|||
|
On Mar 21, 9:32*pm, Roy Lewallen wrote:
Keith Dysart wrote: . . . The equation * Pg(t) = Pf.g(t) + Pr.g(t) is more interesting. The basis for this is superposition. The forward and reverse voltage and current are superposed to derive the actual voltage and current. It would seem invalid to also sum the powers. To me it was a complete surprise that summing the voltages produces the correct total voltages and, at the same time, summing the powers (which are a squared function of the voltage) also produce the correct result. But by starting with the equations used to derive forward and reverse voltage and current, it can be easily shown with appropriate substitution that Ptot is always equal to Pforward + Preverse (Or Pf - Pr if you use the other convention for the direction of the energy flow)s. It simply falls out from the way that Vf and Vr are derived from Vactual and Iactual. It only holds true when Z0 is purely real. Of course, when it isn't, time domain analysis becomes very much more cumbersome. But it's not hard to show the problem using steady state sinusoidal analysis, and that's where the cos term appears and is appropriate. * * So * * Pg(t) = Pf.g(t) + Pr.g(t) * is always true. For any arbitrary waveforms. Inclusion * of cos(theta) terms would be incorrect. Thanks for providing the limitation. But I am having difficulty articulating where the math in the following derivation fails. Starting by measuring the actual voltage and current at a single point on the line, and wishing to derive Vf and Vr we have the following four equations: V = Vf + Vr I = If - Ir Zo = Vf / If Zo = Vr / Ir rearranging and substituting Vf = V - Vr = V - Zo * Ir = V - Zo * (If - I) = V - Zo * (Vf/Zo - I) = V - Vf + Zo * I = (V + Zo * I)/2 similarly Vr = (V - Zo * I)/2 Pf = Vf * If = Vf**2 / Zo = ((V + Zo * I)(V + Zo * I)/4)/Zo = (V**2 + 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) Pr = Vr * Ir = (V**2 - 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) So, comtemplating that P = Pf - Pr and substituting P = (V**2 + 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) - (V**2 - 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) = 4(V * Zo * I) / (4 * Zo) = V * I as required. So when Zo is real, i.e. can be represented by R, it is clear that P always equals Pf - Pr. And it does not even matter which value of R is used for R. It does not have to be the characteristic impedance of the transmission line, the subtraction of powers still produces the correct answer. But when Zo has a reactive component, it still cancels out of the equations. So why is this not a proof that also holds for complex Zo. I suspect it has to do with complex Zo being a concept that only works for single frequency sinusoids, but am having difficulty discovering exactly where it fails. And if it is related to Zo and single frequency sinusoids, does that mean that P = Pf - Pr also always works for single frequency sinusoids? ...Keith |
|
#4
|
|||
|
|||
|
On Sat, 22 Mar 2008 03:48:51 -0700 (PDT)
Keith Dysart wrote: On Mar 21, 9:32*pm, Roy Lewallen wrote: Keith Dysart wrote: . . . The equation * Pg(t) = Pf.g(t) + Pr.g(t) is more interesting. The basis for this is superposition. The forward and reverse voltage and current are superposed to derive the actual voltage and current. It would seem invalid to also sum the powers. To me it was a complete surprise that summing the voltages produces the correct total voltages and, at the same time, summing the powers (which are a squared function of the voltage) also produce the correct result. But by starting with the equations used to derive forward and reverse voltage and current, it can be easily shown with appropriate substitution that Ptot is always equal to Pforward + Preverse (Or Pf - Pr if you use the other convention for the direction of the energy flow)s. It simply falls out from the way that Vf and Vr are derived from Vactual and Iactual. It only holds true when Z0 is purely real. Of course, when it isn't, time domain analysis becomes very much more cumbersome. But it's not hard to show the problem using steady state sinusoidal analysis, and that's where the cos term appears and is appropriate. * * So * * Pg(t) = Pf.g(t) + Pr.g(t) * is always true. For any arbitrary waveforms. Inclusion * of cos(theta) terms would be incorrect. Thanks for providing the limitation. But I am having difficulty articulating where the math in the following derivation fails. Starting by measuring the actual voltage and current at a single point on the line, and wishing to derive Vf and Vr we have the following four equations: V = Vf + Vr I = If - Ir Zo = Vf / If Zo = Vr / Ir rearranging and substituting Vf = V - Vr = V - Zo * Ir = V - Zo * (If - I) = V - Zo * (Vf/Zo - I) = V - Vf + Zo * I = (V + Zo * I)/2 similarly Vr = (V - Zo * I)/2 Pf = Vf * If = Vf**2 / Zo = ((V + Zo * I)(V + Zo * I)/4)/Zo = (V**2 + 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) Pr = Vr * Ir = (V**2 - 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) So, comtemplating that P = Pf - Pr and substituting P = (V**2 + 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) - (V**2 - 2(V * Zo * I) + Zo**2 * I**2) / (4 * Zo) = 4(V * Zo * I) / (4 * Zo) = V * I as required. So when Zo is real, i.e. can be represented by R, it is clear that P always equals Pf - Pr. And it does not even matter which value of R is used for R. It does not have to be the characteristic impedance of the transmission line, the subtraction of powers still produces the correct answer. But when Zo has a reactive component, it still cancels out of the equations. So why is this not a proof that also holds for complex Zo. I suspect it has to do with complex Zo being a concept that only works for single frequency sinusoids, but am having difficulty discovering exactly where it fails. And if it is related to Zo and single frequency sinusoids, does that mean that P = Pf - Pr also always works for single frequency sinusoids? ...Keith I am very impressed with this series of equations/relationships. These equations clarify your previous postings and provide a basis for future enrichment. I think that a complex Zo would not be a transmission line, but would be an end point. Any complex end point could be represented by a length of transmission line with a resistive termination. Once that substitution was made, the problem should come back to the basic equations you presented here. -- 73, Roger, W7WKB |
|
#5
|
|||
|
|||
|
On Mar 22, 11:17*am, Roger Sparks wrote:
I think that a complex Zo would not be a transmission line, but would be an end point. *Any complex end point could be represented by a length of transmission line with a resistive termination. *Once that substitution was made, the problem should come back to the basic equations you presented here.. The characteristic impedance for a transmission line is Zo = sqrt( (R + jwL) / (G + jwC) ) For a lossline (no resistance in the conductors, and no conductance between the conductors), this simplifies to Zo = sqrt( L / C ) So real lines actually have complex impedances. But the math is simpler for ideal (lossless) lines and there is much to be learned from studying the simplified examples. But caution is needed when taking these results to the real world of lines with loss. ...Keith |
|
#6
|
|||
|
|||
|
On Sun, 23 Mar 2008 03:42:36 -0700 (PDT)
Keith Dysart wrote: On Mar 22, 11:17*am, Roger Sparks wrote: I think that a complex Zo would not be a transmission line, but would be an end point. *Any complex end point could be represented by a length of transmission line with a resistive termination. *Once that substitution was made, the problem should come back to the basic equations you presented here. The characteristic impedance for a transmission line is Zo = sqrt( (R + jwL) / (G + jwC) ) For a lossline (no resistance in the conductors, and no conductance between the conductors), this simplifies to Zo = sqrt( L / C ) So real lines actually have complex impedances. But the math is simpler for ideal (lossless) lines and there is much to be learned from studying the simplified examples. But caution is needed when taking these results to the real world of lines with loss. ...Keith Yes, I concur with these comments. The characteristic impedance can also be found from Zo = 1/(C*Vel) where C is the capacitance of the line per unit distance and Vel is the velocity of the wave. This second solution for Zo demonstrates the power storage capabilities of the transmission line over time. But as you say, real lines also have resistance losses and other losses so use great care when taking these results into the real world -- 73, Roger, W7WKB |
|
#7
|
|||
|
|||
|
On Sun, 23 Mar 2008 05:10:26 -0700, Roger Sparks
wrote: Zo =3D 1/(C*Vel) where C is the capacitance of the line per unit distance and Vel is the vel= ocity of the wave. This second solution for Zo demonstrates the power storage capabilities of = the transmission line over time. What is old is new again. Hasn't this "formula" been put in the ground once before? For one, what is velocity but something that has to be computed first only to find us refilling all the terms back into this shortcut? For two, "power storage capabilities... over time?" Apparently the stake missed the heart of this one. = A0 =A 0 = A0 = A 0 Vs = A 0 =A 0 = A0 = A0 =A 0 = A0 = A 0 73's Richard Clark, KB7QHC |
|
#8
|
|||
|
|||
|
Keith Dysart wrote:
To me it was a complete surprise that summing the voltages produces the correct total voltages and, at the same time, summing the powers (which are a squared function of the voltage) also produce the correct result. Why is that a surprise to you? I have been telling you for many days about that special case whe (V1^2 + V2^2) = (V1 + V2)^2 for zero interference This applies equally well to phasors or instantaneous values of voltage. The above special case is what my Part 1 article is all about. Since a 45 degree long transmission line forces the above RMS voltage equation to be true for all values of resistive loads, the *average* reflected power based on RMS voltage values is *always* dissipated in the source resistor. Since a conservation of power principle does not exist, it is perfectly acceptable for destructive interference energy to be stored for part of the cycle and be dissipated later in the cycle. So Pg(t) = Pf.g(t) + Pr.g(t) is always true. Of course it is true but it says absolutely nothing about the dissipation of the reflected power in the source resistor which is the subject of the discussion. The above equation remains always true while the dissipation of the reflected power in the source resistor varies from 0% to 100%. -- 73, Cecil http://www.w5dxp.com |
| Reply |
| Thread Tools | Search this Thread |
| Display Modes | |
|
|
Similar Threads
|
||||
| Thread | Forum | |||
| Now for the rest of the story! | General | |||
| Now for the rest of the story! | Policy | |||
| Now for the rest of the story! | General | |||
| Now for the rest of the story! | Policy | |||
| WTD: Paul Harvey Rest of the Story broadcasts from Sep 1 thru 6 | Broadcasting | |||