Home |
Search |
Today's Posts |
#20
![]() |
|||
|
|||
![]()
Richard Harrison wrote:
Mike, N3LI wrote: "Why would the velocity be less at increased (antenna element) width?" Let B = the phase velocity on the antenna element, in radians per unit length. 2pi/B = wavelength on the element. Therefore, 2pi/B=velocity of phase propagation. Due to the behavior of of open-circuited transmission lines and open-circuited antennas: B=2pif times sq.rt. of LC radians / unit length. 2 pi f / B = velocity of propagation. It is intuitive that a fat antenna element has more L & C than a thin element and thus a lower velocity of propagation. I thought that the inductance tends downward as the diameter of the wire increases. I can understand your calculation after the wavelength part, but don't quite get the increased inductance part. - 73 de Mike N3LI - |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
dipole antenna design question | Antenna | |||
Amp design question | Homebrew | |||
Yagi antenna design question | Antenna | |||
Question about the uses for an antenna design | Antenna | |||
Ferrite Magnet antenna ; parts purchase / design question | Shortwave |