Home |
Search |
Today's Posts |
#14
![]() |
|||
|
|||
![]() "Frank" wrote in message news:t4okd.90482$VA5.33610@clgrps13... "Frank" wrote in message news:H4hkd.141267$9b.112169@edtnps84... Modeled #14 AWG, copper conductor, 32ft monopole, 29 radials of 25ft, and base 6" above (nominal lambda/1000) Sommerfeld/Norton ground of Er = 13, sigma = 0.013 S/m at 1.8 MHz. All segments 6". NEC2 computes: Zin = 2.87 - j1358 Efficiency 92% RADIALS2 computes (with radials 1mm below ground): Zin = 1.55 - j1310 Efficiency 23.5% Not a large amount of difference, but thought I had gotten closer results with a different monopole, but seem to have deleted the code (Not sure why such a large difference in efficiency). NEC2 is supposed to provide a reasonable approximation of a buried radial monopole when at about lambda/1000 above ground. Be interested in any comments, and what NEC4 provides if anybody has it. 73, Of course the higher efficiency is due to NEC calculating only the I^2R losses, and not the TRP. TRP should be fairly easy to calculate since the pattern is "phi" independent. Have not checked to see if there is a TRP card. Note that a 32 ft monopole mounted on a perfect ground has an input impedance of 1.58 - j1311 Ohms. The efficiency is reduced to 86% due to increased I^2R losses. Frank From the calculated field strength (as a function of Theta) the TRP for 100 W input, which includes copper and ground losses, shows 27.4 W, or 27.4% efficient. In very close agreement with the RADIALS2 program. The only noticeable discrepancy appears to be in the real part of Zin. Frank |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
An easy experiment with a coil | Antenna | |||
NEWS - Researchers invent antenna for light | Antenna | |||
Lumped Load Models v. Distributed Coils | Antenna |