Home |
Search |
Today's Posts |
#8
![]() |
|||
|
|||
![]()
Tom, rho^2 represents the fraction of forward power that is reflected.
The squaring function produces a positive value. Rho represents the percentage of voltage or current. Rho^2 is the power function. Dave Jim Kelley wrote: Hi Tom, Since rho represents the fraction of forward power that is reflected, what does a negative value for rho indicate? Thanks, Jim AC6XG Tom Bruhns wrote: Hi Dave (and lurkers), Well, if rho=Ir/If, then the net current on the line is If-Ir, NOT If+Ir. You have to be careful about directions, and be careful to define things and stick with those definitions. I usually use Zo=Vf/If=-Vr/Ir, so that Ir and If measure "positive" in the same physical direction along the line, and then of course rho=Vr/Vf=-Ir/If. If that's at all hazy, just draw a picture and it should be clear. Anyway, rho=+1 at a point of zero net current, either way you define the current direction, and rho=-1 at a point of zero net voltage. No Smith chart, and no Zo, needed to figure that out. Cheers, Tom Dave Shrader wrote in message news:iBkcb.568264$o%2.253779@sccrnsc02... Hmmm ... Tom rho also equals Ir/If. Now if the line is open circuited ... the net current is zero (i.e. at an open circuit). Therefore Ir = -If, and rho is a -1. Comment? Tom Bruhns wrote: I trust we can all agree that the definition of rho is rho=Vr/Vf, and I trust we can all agree that on a TEM line, the net voltage Vnet=Vr+Vf. If the net voltage is zero (i.e. at a short circuit), then clearly Vr=-Vf, and rho=-Vf/Vf=-1. Then whatever formula you chose to use to find rho at a load from the load impedance, Zload, and the line characteristic impedance, Zo, better work out right for a short circuit termination. Note that "rho=(Zload-Zo*)/(Zload+Zo)" does NOT work for that simple case, unless Zo*=Zo. But "rho=(Zload-Zo)/(Zload+Zo)" does work. You can easily go through something similar for an open circuit load. Note that rho=-1 for a short circuit load, and rho=+1 for an open circuit load, independent of line impedance. Cheers, Tom (Tom Bruhns) wrote in message ... It's even easier than that. Using the _definition_ of reflection coefficient, rho = Vr/Vf, we see that Vr=-Vf and therefore the net line voltage at that point is zero (that is, Vf+Vr, or Vf-Vf, or zero). That's either a real short or a virtual short. Cheers, Tom "David Robbins" wrote in message ... lets see... rho = (Z - Zo)/(Z + Zo) if rho = -1 then -1=(Z-Zo)/(Z+Zo) or -1*(Z+Zo)=(Z-Zo) or -Z - Zo = Z - Zo or -Z = Z the only value i know that satisfies that is zero. lets substitute it back in to be sure... -1=(0-(50+j50))/(0+(50+j50)) -1=(-50-j50)/(50+j50) -1=-1(50+j50)/(50+j50) -1=-1 qed. |
Thread Tools | Search this Thread |
Display Modes | |
|
|