Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]() Cecil Moore wrote: Roy, none of my textbook authors think the reflection model is flawed. Walter Johnson goes so far as to assert that there is a Poynting (Power Flow Vector) for forward power and a separate Poynting Vector for reflected power. The sum of those two Power Flow Vectors is the net Poynting Vector. Here's my earlier thought example again. 100w----one second long lossless feedline----load, rho=0.707 SWR = (1+rho)/(1-rho) = 5.828:1 Source is delivering 100 watts (joules/sec) Forward power is 200 watts (joules/sec) Reflected power is 100 watts (joules/sec) Load is absorbing 100 watts (joules/sec) It can easily be shown that 300 joules of energy have been generated that have not been delivered to the load, i.e. those 300 joules of energy are stored in the feedline. Not easy if t 2 sec. :-) The 300 joules of energy are stored in RF waves which cannot stand still and necessarily travel at the speed of light. It's ironic that the first paramater cited in the problem starts with an 'S'. :-) TV ghosting can be used to prove that the reflected energy actually makes a round trip to the load and back. A TDR will indicate the same thing. If either source were monochromatic, I bet I could come up with an example where the surfaces reflect no energy. :-) Choosing to use a net energy shortcut doesn't negate the laws of physics. Particular when characterized as a matter of opinion, it can be like having a religious discussion. 73 ac6xg |
Thread Tools | Search this Thread |
Display Modes | |
|
|