Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
Cecil Moore wrote:
If you want to know the velocity factor of a piece of transmission line, the easiest thing to do is find its first self-resonant frequency. A little math will yield the VF which allows prediction of the phase shift through any reasonable length of tranmission line. If you want to know the velocity factor of a coil, the easiest thing to do is find its first self- resonant frequency. A little math will yield the VF of the coil which allows prediction of the phase shift through any reasonable length of coil. If the inductor in question does not take much advantage of mutual induction across its length nor has much capacitance across its length (say, a straight conductor, strung with ferrite toroids), then I can see the similarity with a transmission line. But as the inductor approaches a lumped inductance with significant inter winding capacitance and mutual inductance coupling the current across a significant part of its winding length, I see on reason to assume the transmission line method (delay independent of frequency) strictly applies. It might, but it would take more than you saying so to assure me that it is a fact. In other words, transmission line concepts like uniform inductance per length and uniform capacitance per length get rather muddled in a real inductor. |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Current in Loading Coils | Antenna | |||
FCC: Broadband Power Line Systems | Policy | |||
FS: sma-to-bnc custom fit rubber covered antenna adapter | Scanner | |||
Current in antenna loading coils controversy (*sigh*) | Antenna | |||
Current in antenna loading coils controversy | Antenna |