Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #11   Report Post  
Old November 1st 03, 12:51 AM
Jason Dugas
 
Posts: n/a
Default

Asswipe,

The question I posed wasn't "What's the velocity factor of ALL solid
polyethylene coax cable". Next time read the question and answer it. If
you don't know the answer then DON'T POST A REPLY!

Too many ignorant people in these groups anymore!

"Reg Edwards" wrote in message
...
The velocity factor of ALL solid polyethylene coax cable, regardless of
impedance, is 0.665




  #12   Report Post  
Old November 2nd 03, 05:36 AM
 
Posts: n/a
Default



Jason Dugas wrote:

I'm interested in measuring the velocity factor of some coax I have (more of
an exercise than necessity). In order to do this, the MFJ-259 Operations
manual states that the "stub" to be measured should be attached with a
50-ohm noninductive resistor in series to that center conductor of the
Antenna connector on the analyzer.



You may think it says this:
MFJ-resistor-coax_center_conductor--
|
---------coax_shield------------

But maybe it means this:

MFJ----------------coax_center_conductor-resistor-
|
----------------coax_shield--------------------

I don't know what the MFJ documentation says - but if
they want a 50 ohm resistor in series from the center
conductor and the shield, put it at the far end of the
length of coax you are testing. Connect it as shown in
the bottom diagram by soldering the resistor directly
across the center conductor and shield at the far end.

The way I do it is to cut a physical 1/2 wavelength
coax for the frequency, install a pl259 on one end and
connect it to the MFJ. I install a 51 ohm resistor at
the far end of the coax. When that resistor is 1/2
wave away *electrically*, it's impedance will appear
across the PL259 plugged into the MFJ. You need to
shorten the coax by snipping off some of the length
at the far end, then reinstalling the resistor.
When you have the thing at an electrical 1/2 wave
you'll get Z=50 at the MFJ. Your VF is the length
of that piece of coax divides by the original length.

Maybe the MFJ documents a better way - I dunno - but
I've used my way successfully.



What would be a good way of making this connection? I've thought about it
quite a bit; the best idea I've come up with so far is to have a small metal
enclosure w/ two SO-239's mounted. The resistor would go from center
conductor to center conductor of each SO-239. But this requires too many
extra connections & lengths. Is there a better way to do this? Would love
to see anyone else's experimental setup, particularly if there are pictures
or details on the web.

Thanks & 73,

Jason
KB5URQ

  #13   Report Post  
Old November 2nd 03, 05:36 AM
 
Posts: n/a
Default



Jason Dugas wrote:

I'm interested in measuring the velocity factor of some coax I have (more of
an exercise than necessity). In order to do this, the MFJ-259 Operations
manual states that the "stub" to be measured should be attached with a
50-ohm noninductive resistor in series to that center conductor of the
Antenna connector on the analyzer.



You may think it says this:
MFJ-resistor-coax_center_conductor--
|
---------coax_shield------------

But maybe it means this:

MFJ----------------coax_center_conductor-resistor-
|
----------------coax_shield--------------------

I don't know what the MFJ documentation says - but if
they want a 50 ohm resistor in series from the center
conductor and the shield, put it at the far end of the
length of coax you are testing. Connect it as shown in
the bottom diagram by soldering the resistor directly
across the center conductor and shield at the far end.

The way I do it is to cut a physical 1/2 wavelength
coax for the frequency, install a pl259 on one end and
connect it to the MFJ. I install a 51 ohm resistor at
the far end of the coax. When that resistor is 1/2
wave away *electrically*, it's impedance will appear
across the PL259 plugged into the MFJ. You need to
shorten the coax by snipping off some of the length
at the far end, then reinstalling the resistor.
When you have the thing at an electrical 1/2 wave
you'll get Z=50 at the MFJ. Your VF is the length
of that piece of coax divides by the original length.

Maybe the MFJ documents a better way - I dunno - but
I've used my way successfully.



What would be a good way of making this connection? I've thought about it
quite a bit; the best idea I've come up with so far is to have a small metal
enclosure w/ two SO-239's mounted. The resistor would go from center
conductor to center conductor of each SO-239. But this requires too many
extra connections & lengths. Is there a better way to do this? Would love
to see anyone else's experimental setup, particularly if there are pictures
or details on the web.

Thanks & 73,

Jason
KB5URQ

  #20   Report Post  
Old November 3rd 03, 02:35 PM
Tim Shoppa
 
Posts: n/a
Default

"Jason Dugas" wrote in message ...
I'm interested in measuring the velocity factor of some coax I have (more of
an exercise than necessity). In order to do this, the MFJ-259 Operations
...
What would be a good way of making this connection?


Do you have a scope and a pulse generator? If so, just make a simple
TDR (Time Domain Reflectometry) setup to measure the reflection from a
un-terminated or shorted far end of the cable. You will get much more
accurate results with substantially less effort.

Don't get me wrong, the MFJ-259 is a good instrument. It's just that TDR
is so quick and easy and unambiguous for propogation delay measurements.

Tim.
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
End effect, velocity propagation question Tac Antenna 3 May 25th 04 10:00 PM
Measuring radiation resistance Reg Edwards Antenna 11 December 13th 03 12:51 PM
Shielded Loop - Velocity Factor? Loopfan Antenna 4 July 16th 03 07:33 AM


All times are GMT +1. The time now is 05:49 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017