Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
Hi Roy,
thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#2
![]() |
|||
|
|||
![]()
You're climbing a steep hill here James. It is the % change in frequency
that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#3
![]() |
|||
|
|||
![]()
2:1 tuning range with varactor tuning is very doable in the frequency range
he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#4
![]() |
|||
|
|||
![]()
Thanks Joe,
I wouldn't have thought it would be too difficult. Minicircuits sells parts that have a 2:1 range (not the right range though), and I only want 1.7:1 or so. Interesting idea about downmixing, but I really don't want another mixer and oscillator in this thing. Acording to my pspice results I can get the range, but I'm a little concerned about the high voltage swing on the varactors causing very poor phase noise. James. "W3JDR" wrote in message ... 2:1 tuning range with varactor tuning is very doable in the frequency range he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#5
![]() |
|||
|
|||
![]()
James
In general, very wide tuning range and very good phase noise are sort of antithetical. If you use the circuit I sent you, the phase noise will be quite good for your simple spectrum analyzer application (unless you're planning to have a very high resolution/very low bandwidth mode). Don't get too hung up on your Spice modeling. It can keep you from trying some things that are known to work. In general, if I can build it faster than I can model it, I'll just go right for building it. I use modeling to get another perspective, but not to get the whole picture. Joe "James Fenech" wrote in message ... Thanks Joe, I wouldn't have thought it would be too difficult. Minicircuits sells parts that have a 2:1 range (not the right range though), and I only want 1.7:1 or so. Interesting idea about downmixing, but I really don't want another mixer and oscillator in this thing. Acording to my pspice results I can get the range, but I'm a little concerned about the high voltage swing on the varactors causing very poor phase noise. James. "W3JDR" wrote in message ... 2:1 tuning range with varactor tuning is very doable in the frequency range he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#6
![]() |
|||
|
|||
![]()
Seems to me I read a note about W7ZOI starting to build a variation of his
original spectrum analyzer which will cover up to 200 MHz. http://users.easystreet.com/w7zoi/vhfbpf.html He expects to use a mini-circuit VCO. POS-535 VCO from MiniCircuits will sweep from 260 to 460 MHz Given a first IF of 260 MHz, it all works nicely. Personally, I'd be inclined to do something like this, using the minicircuits part, since they tend to be fairly linear tuning MHz/VOLT which simplifies the sweep circuitry a lot. I have built broadband tuning range VCOs before, and I know it can be done, but in a spectrum analyzer, the performance is usually limited by the first VCO so using a good performance VCO makes sense to me. Jim N6BIU |
#7
![]() |
|||
|
|||
![]()
James
In general, very wide tuning range and very good phase noise are sort of antithetical. If you use the circuit I sent you, the phase noise will be quite good for your simple spectrum analyzer application (unless you're planning to have a very high resolution/very low bandwidth mode). Don't get too hung up on your Spice modeling. It can keep you from trying some things that are known to work. In general, if I can build it faster than I can model it, I'll just go right for building it. I use modeling to get another perspective, but not to get the whole picture. Joe "James Fenech" wrote in message ... Thanks Joe, I wouldn't have thought it would be too difficult. Minicircuits sells parts that have a 2:1 range (not the right range though), and I only want 1.7:1 or so. Interesting idea about downmixing, but I really don't want another mixer and oscillator in this thing. Acording to my pspice results I can get the range, but I'm a little concerned about the high voltage swing on the varactors causing very poor phase noise. James. "W3JDR" wrote in message ... 2:1 tuning range with varactor tuning is very doable in the frequency range he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#8
![]() |
|||
|
|||
![]()
Seems to me I read a note about W7ZOI starting to build a variation of his
original spectrum analyzer which will cover up to 200 MHz. http://users.easystreet.com/w7zoi/vhfbpf.html He expects to use a mini-circuit VCO. POS-535 VCO from MiniCircuits will sweep from 260 to 460 MHz Given a first IF of 260 MHz, it all works nicely. Personally, I'd be inclined to do something like this, using the minicircuits part, since they tend to be fairly linear tuning MHz/VOLT which simplifies the sweep circuitry a lot. I have built broadband tuning range VCOs before, and I know it can be done, but in a spectrum analyzer, the performance is usually limited by the first VCO so using a good performance VCO makes sense to me. Jim N6BIU |
#9
![]() |
|||
|
|||
![]()
My comments are colored by experience desigining quite low noise, relitavely
narrow bandwidth VCOs, so all the other comments are very valid. I will note that there are two aspects of noise to consider, that I can think of off hand. One is that: 1) Too low of an absolute DC voltage on the varactors will make for a noisy VCO and 2) A wide tuning range means that the varactor is relatively tightly coupled into the oscillator which means that control line noise/spurs you'll have to watch control line noise & spurs. 3) This also means the Varactors have more effect on the oscillator Q and therefore can also mean increased noise. OK nobody expects the Spanish inquisition. If you can determine the actual noise performance and keep it in mind that the analyzer has a noise limit, you'll be ok. Been away from it too long and can't seem to recall why we used to use two, back-to-back varactors...brain is full...seems like it was to reduce the voltage across the varactor. 'guards, Steve K;9;D:C:I "W3JDR" wrote in message ... 2:1 tuning range with varactor tuning is very doable in the frequency range he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
#10
![]() |
|||
|
|||
![]()
Steve,
I think the main reason for back-to-back diodes is to prevent rectification of the RF. Rectification can cause several bad things, including pushing DC current back out the tuning voltage line, instability, and increased phase noise. Having said that, I tried back-to-back diodes a couple times and I don't ever recall ending up with it in the final design, so it must not have added all that much value. On the negative side, it halves the capacitance. One technique to improve the phase noise in wide-band VCO's was shown by Ulrich Rhode. He uses several diodes in parallel in order to decrease the RF current in each diode, reportedly lowering losses and improving noise. I never tried it myself. Joe W3JDR "Steve Nosko" wrote in message ... My comments are colored by experience desigining quite low noise, relitavely narrow bandwidth VCOs, so all the other comments are very valid. I will note that there are two aspects of noise to consider, that I can think of off hand. One is that: 1) Too low of an absolute DC voltage on the varactors will make for a noisy VCO and 2) A wide tuning range means that the varactor is relatively tightly coupled into the oscillator which means that control line noise/spurs you'll have to watch control line noise & spurs. 3) This also means the Varactors have more effect on the oscillator Q and therefore can also mean increased noise. OK nobody expects the Spanish inquisition. If you can determine the actual noise performance and keep it in mind that the analyzer has a noise limit, you'll be ok. Been away from it too long and can't seem to recall why we used to use two, back-to-back varactors...brain is full...seems like it was to reduce the voltage across the varactor. 'guards, Steve K;9;D:C:I "W3JDR" wrote in message ... 2:1 tuning range with varactor tuning is very doable in the frequency range he's considering. I've done 3:1 at lower frequencies. No steep hill at all. Joe W3JDR "Steve Nosko" wrote in message ... You're climbing a steep hill here James. It is the % change in frequency that is the problem. Professional spec analysers use a 2 GHz LO with a 2:1 range (to scan 0-2GHz), but I believe that is a magnetically tuned YIG resonator. If you could get the frequency higher, so the sweep range is narrower, then mix to the desired freq with a balanced mixer...that would be an easier VCO design. Steve K;9;d;c;i The punctuation is my feeble attempt at spam-bot blocking. "James Fenech" wrote in message ... Hi Roy, thanks for the suggestion. I am considering buying this book. Can I ask how much theory, and how deep does it go? I am an engineer (digital electornics and software background) and actually like some theory to help me understand what I am doing. I already have some "real" test equipment, 50MHz CRO, signal generator, multimeter, etc. So "simple" test equipment may not be too much of an improvement. I've looked over the internet, and some books that I have, but found no real example circuit on wideband VCOs. The only "sort of close enough" circuit I found is at: http://www.newwaveinstruments.com/resources/rf_microwave_resources/sections/oscillator_vco_theory_design_circuit.htm#Voltage%2 0Controled%20Oscillator%20(VCO)%20Circuits The second one down - Colpitts. Are there any such examples in this book? Thanks, James. "Roy Lewallen" wrote in message ... I highly recommend _Experimental Methods in RF Design_, by Hayward, Cambell, and Larkin. It's published by the ARRL and available from them and numerous other sources. Besides theory and a lot of real, practical, tested circuits and projects, it includes simple test equipment you can build yourself. Roy Lewallen, W7EL James Fenech wrote: . . . I have the ARRL handbook (1997 or so) but this doesn't have much in the way of theory. Is there any other reference anyone can recommend? . . . |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Source for Microwave Diodes? | Homebrew | |||
Source for Microwave Diodes? | Homebrew | |||
Kenwood TS-440S Replacement Diodes? | Equipment | |||
Kenwood TS-440S Replacement Diodes? | Equipment | |||
pin diode attenuators and switches | Homebrew |