Home |
Search |
Today's Posts |
#10
![]() |
|||
|
|||
![]()
On Fri, 12 Mar 2004 16:08:15 +0000, John Woodgate
wrote: I read in sci.electronics.design that Reg Edwards wrote (in et.com) about 'Extracting the 5th Harmonic', on Fri, 12 Mar 2004: According to Fourier, at some mark-space ratios of a square wave certain harmonics may be missing from the spectrum. For a waveform like this (use Courier font): _____ / \ / _____/ \____________/ with rise-time f, dwell time d, fall time r and period T, the harmonic magnitudes are given by: Cn = 2Aav{sinc(n[pi]f/T)}{sinc(n[pi][f+d]/T)}{sinc(n[pi][r-f]/T)}, where sinc(x)= {sin(x)}/x There seems to be a number of opportunities for a harmonic to 'hide' in a zero of that function. Great. So without a spectrum analyser there's no way to tell? If I examine the output of the multiplier, it's very messy. There's a dominant 3rd harmonic alright (my frequency counter resolves it without difficulty) but the scope trace reveals a number of 'ghost traces' of different frequencies and amplitudes co-incident with the dominant trace. All rather confusing. I suppose the only answer is to build Reg's band pass filter and stick it between the inverter output and the multiplier input? shrug -- The BBC: Licensed at public expense to spread lies. |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Shorted 1/4 wave stub ? | Antenna | |||
A Simple Harmonic Generator. | Antenna | |||
Frequency multiplication | Homebrew |