Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #191   Report Post  
Old July 7th 07, 09:11 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"Bob Myers" wrote in message
...

"Ron Baker, Pluralitas!" wrote in message
...

First of all, do you think you could possibly learn to trim your posts?

No nonlinearity is necessary in order to hear
a beat?
Where does the beat come from?


An audible beat tone is produced by the constructive and destructive
interference between two sound waves in air. Look at a pictorial
representation (in the time domain) of the sum of sine waves,of similar
amplitudes, one at, say, 1000 Hz and the other at 1005, and you'll
see it.

Bob M.


How come you don't hear a 200 Hz beat
with a 1000 Hz tone and a 1200 Hz tone?


  #192   Report Post  
Old July 8th 07, 05:15 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"Bob Myers" wrote in message
...

"Ron Baker, Pluralitas!" wrote in message
...

"Bob Myers" wrote in message
...

"Ron Baker, Pluralitas!" wrote in message
...

First of all, do you think you could possibly learn to trim your posts?


Apparently, no, you can't. Too lazy to take the trouble to
perform this common courtesy, or what?


You could always plonk me.


An audible beat tone is produced by the constructive and destructive
interference between two sound waves in air. Look at a pictorial
representation (in the time domain) of the sum of sine waves,of similar
amplitudes, one at, say, 1000 Hz and the other at 1005, and you'll
see it.

Bob M.


How come you don't hear a 200 Hz beat
with a 1000 Hz tone and a 1200 Hz tone?


For the simple reason that there isn't actually a "tone" involved -
in other words, there is no actual signal at the difference frequency.
There can't be, since there is no "mixing" (multiplication) of the
two original tones.


There is no multiplication of 1000 Hz and 1005 Hz
either, is there? Why don't you hear 1000 Hz and
1005 Hz rather than a single tone varying in amplitude?

The "beat" is really just the perception of
the amplitude variation caused by the interference previously
mentioned. You cannot sense such variations if they occur
rapidly enough, any more than you can detect the flicker of a
light source which is varying rapidly enough.

Bob M.


Could it be that the human auditory system is not
linear?


  #193   Report Post  
Old July 8th 07, 05:17 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency


"Don Bowey" wrote in message
...
On 7/4/07 8:42 PM, in article ,
"Ron
Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article
,
"Ron
Baker, Pluralitas!" wrote:

snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

No, they aren't the same at all, they only appear to be the same
before
they are examined. The two sidebands will not have the correct phase
relationship.

What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full
carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is
modulated


The questions I posed were not about AM. The
subject could have been viewed as DSB but that
wasn't the specific intent either.


You should take some time to more carefully frame your questions.

Do you understand that a DSB signal *is* AM?


So all the AM broadcasters are wasting money by
generating a carrier?


Post your intention; it might help.


onto a carrier via a non-linear process), at an envelope detector the
two
sidebands will be additive. But if you independe ntly place a carrier
at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at
(c+
1
kHz), the composite can look like an AM signal, but it is not, and only
by
the most extreme luck will the sidebands be additive at the detector.
They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.






  #194   Report Post  
Old July 8th 07, 05:24 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"Rich Grise" wrote in message
news
On Tue, 03 Jul 2007 22:42:20 -0700, isw wrote:

After you get done talking about modulation and sidebands, somebody
might want to take a stab at explaining why, if you tune a receiver to
the second harmonic (or any other harmonic) of a modulated carrier (AM
or FM; makes no difference), the audio comes out sounding exactly as it
does if you tune to the fundamental? That is, while the second harmonic
of the carrier is twice the frequency of the fundamental, the sidebands
of the second harmonic are *not* located at twice the frequencies of the
sidebands of the fundamental, but rather precisely as far from the
second harmonic of the carrier as they are from the fundamental.


Have you ever actually observed this effect?

Thanks,
Rich


I have.
I tuned to the third harmonic of a strong local
AM broadcast station. There it was. Quite
a surprise. It is a bit distorted but intelligible.
Another odd thing is that it comes and goes
somewhat abruptly.



  #195   Report Post  
Old July 8th 07, 05:49 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

In article ,
"Ron Baker, Pluralitas!" wrote:


--snippety-snip--

You said you are a physicist/engineer.
What does "linear" mean?


Let's not get too far off the subject here. We were discussing whether
the "tuning beat" that you use to tune a musical instrument involved a
nonlinear process (ie. "modulation").


Then linearity is at the core of the matter.
What does "linear" (or "nonlinear") mean to you?


OK, if you insist -- *in this case* it means "linear enough to not
produce IM products of significant amplitude".

I said that it does not, and that
it could be detected by instrumentation which was proveably linear (i.e.
not "perfectly" linear, because that's not required, but certainly
linear enough to discount the requirement for "modulation").


No nonlinearity is necessary in order to hear
a beat?
Where does the beat come from?


As the phase of the two nearly equal waves move past each other, there
is simple vector summation which varies the amplitude.

Consider two sine waves of precisely the same frequency, where one of
them is adjustable in phase -- use a goniometer, for instance. Use a set
of resistors to sum the two signals, and observe the summing point with
a 'scope or a loudspeaker. By altering the phase of one source, you can
get any amplitude you want from zero up to twice the amplitude of either
one.

Now just twiddle that phase knob around and around as fast as you can.

You've just slightly altered the instantaneous frequency of one of the
generators (but only while you twiddle), and accomplished pretty much
the same effect as listening to the beat between two guitar strings at
nearly zero frequency offset. With no nonlinear processes in sight.

Isaac


  #196   Report Post  
Old July 8th 07, 05:52 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 286
Default AM electromagnetic waves: 20 KHz modulationfrequencyonanastronomically-low carrier frequency

On 7/7/07 9:17 PM, in article , "Ron
Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 8:42 PM, in article ,
"Ron
Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article
,
"Ron
Baker, Pluralitas!" wrote:

snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

No, they aren't the same at all, they only appear to be the same
before
they are examined. The two sidebands will not have the correct phase
relationship.

What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full
carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is
modulated

The questions I posed were not about AM. The
subject could have been viewed as DSB but that
wasn't the specific intent either.


You should take some time to more carefully frame your questions.

Do you understand that a DSB signal *is* AM?


So all the AM broadcasters are wasting money by
generating a carrier?



You are an ignorant, useless troll, and not worth my time




Post your intention; it might help.


onto a carrier via a non-linear process), at an envelope detector the
two
sidebands will be additive. But if you independe ntly place a carrier
at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at
(c+
1
kHz), the composite can look like an AM signal, but it is not, and only
by
the most extreme luck will the sidebands be additive at the detector.
They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.







  #197   Report Post  
Old July 8th 07, 05:56 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Oct 2006
Posts: 49
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency


"Ron Baker, Pluralitas!" wrote in message
...
Do you understand that a DSB signal *is* AM?


So all the AM broadcasters are wasting money by
generating a carrier?


How did you jump to that conclusion.




  #198   Report Post  
Old July 8th 07, 06:08 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 2,053
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-lowcarrier frequency

Ron Baker, Pluralitas! wrote:

Could it be that the human auditory system is not
linear?



No. Humans had to evolve to incorporate a non linear response to sound
when the electronics manufacturers started supplying ONLY non linear
potentiometers for audio equipment use.

This mutation, which is now the norm, was completely unknown before the
start of the twentieth century.

We, here at Densa Labs, call it Darwinian Decibelism



mike
  #199   Report Post  
Old July 8th 07, 06:16 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
RHF RHF is offline
external usenet poster
 
First recorded activity by RadioBanter: Jun 2006
Posts: 8,652
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency

On Jul 7, 9:56 pm, "Dana" wrote:
"Ron Baker, Pluralitas!" wrote in om...

Do you understand that a DSB signal *is* AM?

-
- - So all the AM broadcasters are wasting money by
- - generating a carrier?
-
- How did you jump to that conclusion.

Somewhere between the Original Post #1
and the 236 Replies to date. ~ RHF

  #200   Report Post  
Old July 8th 07, 05:26 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:


--snippety-snip--

You said you are a physicist/engineer.
What does "linear" mean?

Let's not get too far off the subject here. We were discussing whether
the "tuning beat" that you use to tune a musical instrument involved a
nonlinear process (ie. "modulation").


Then linearity is at the core of the matter.
What does "linear" (or "nonlinear") mean to you?


OK, if you insist -- *in this case* it means "linear enough to not
produce IM products of significant amplitude".


Good enough.
Then spectrum analyzers and the human auditory
system are not linear.
Stay with me here.


I said that it does not, and that
it could be detected by instrumentation which was proveably linear
(i.e.
not "perfectly" linear, because that's not required, but certainly
linear enough to discount the requirement for "modulation").


No nonlinearity is necessary in order to hear
a beat?
Where does the beat come from?


As the phase of the two nearly equal waves move past each other, there
is simple vector summation which varies the amplitude.

Consider two sine waves of precisely the same frequency, where one of
them is adjustable in phase -- use a goniometer, for instance. Use a set
of resistors to sum the two signals, and observe the summing point with
a 'scope or a loudspeaker. By altering the phase of one source, you can
get any amplitude you want from zero up to twice the amplitude of either
one.

Now just twiddle that phase knob around and around as fast as you can.

You've just slightly altered the instantaneous frequency of one of the
generators (but only while you twiddle), and accomplished pretty much
the same effect as listening to the beat between two guitar strings at
nearly zero frequency offset. With no nonlinear processes in sight.

Isaac


You put some effort into that. I give you
credit for that.

The socratic thing isn't working, so here
you go.

Is an envelope detector linear? The answer is no.
But how can that be? If you put in a sine wave of
amplitude A you get A volts out (assuming its gain is 1).
If you put in a sine wave of amplitude 2A and you
get 2A volts out. Linear, right?
Now you put in a sine wave of amplitude A at
455 kHz plus a sine wave of amplitude A at
456 kHz. (Consider the envelope detector
of a typical AM radio here.) What do you get out? A
sine wave of amplitude A/2 at 1 kHz. Intermodulation.
An envelope detector is not linear. No envelope/
amplitude detector is linear.

The typical envelope detector is a diode rectifier
followed by a lowpass filter.
The diode rectifier is obviously nonlinear and
gives you all sorts of intermoduation. With a
single sine wave input you get a DC term and
various harmonics of the sine wave. The lowpass
filter filters out all the harmonics and leaves
the DC.
If you put in two sine waves (assuming their
frequencies are above the cutoff of the subsequent
lowpass and their difference is within the
lowpass) again the diode nonlinearity results
in intermodulation. You get a DC component,
the difference frequency, the sum, and various
higher frequencies. The filter leaves only the
difference frequency and the DC. In an AM
receiver the DC is subsequently blocked too.

Do you see how this applies to spectrum analyzers
and the human auditory system?


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 301 July 20th 07 07:10 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 39 July 3rd 07 05:52 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Shortwave 17 July 3rd 07 05:37 AM
DC waves??? Magic frequency??? Peter O. Brackett Antenna 19 May 24th 07 10:07 PM
Electromagnetic frequency allocations in xml ? [email protected] General 0 December 10th 05 05:47 PM


All times are GMT +1. The time now is 03:42 PM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017