Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On Jul 3, 2:07 pm, Keith Dysart wrote:
On Jul 3, 12:50 pm, John Fields wrote: On Mon, 2 Jul 2007 23:03:36 -0700, "Ron Baker, Pluralitas!" wrote: "John Smith I" wrote in message ... Radium wrote: snip Suppose you have a 1 MHz sine wave whose amplitude is multiplied by a 0.1 MHz sine wave. What would it look like on an oscilloscope? snip What would it look like on a spectrum analyzer? | | | | | | --------+--------------------+-------+------+---- 100kHz 0.9MHz 1MHz 1.1MHz Then suppose you have a 1.1 MHz sine wave added to a 0.9 MHz sine wave. What would that look like on an oscilloscope? snip Tricky!!! It looks like AM but it isn't, it's just the phases sliding past each other slowly and algebraically adding which creates the illusion. What would that look like on a spectrum analyzer? | | | | -----------------------------+--------------+---- 0.9MHz 1.1MHz -- JF But if you remove the half volt bias you put on the 100 kHz signal in the multiplier version, the results look exactly like the summed version, so I suggest that results are the same when a 4 quadrant multiplier is used. And since the original request was for a "1 MHz sine wave whose amplitude is multiplied by a 0.1 MHz sine wave" I think a 4 quadrant multiplier is in order. ...Keith- Ooops. I misspoke. They are not quite the same. The spectrum is the same, but if you want to get exactly the same result, the lower frequency needs a 90 degree offset and the upper frequency needs a -90 degree offset. And the amplitudes of the the sum and difference frequencies need to be one half of the amplitude of the frequencies being multiplied. ....Keith |
Thread Tools | Search this Thread |
Display Modes | |
|
|