LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #11   Report Post  
Old July 14th 07, 06:06 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"Hein ten Horn" wrote in message
...
Ron Baker, Pluralitas! wrote:
David L. Wilson wrote:
Hein ten Horn wrote:
...
So take another example: 25000 Hz and 25006 Hz.
Again, constructive and destructive interference produce 6 Hz
amplitude variations in the air.
But, as we can't hear ultrasonic frequencies, we will not produce
a 25003 Hz perception in our brain. So there's nothing to hear,
no tone and consequently, no beat.

If one looks at an oscilloscope of the audio converted to voltage, one
still can see the 6Hz variations on the 25003 Hz and still refers to
those
as tone and beat. These exist in mathematically formulation of the
resulting waveforms


Right.

not just as something in the brain.


In this particular example nothing is heard
because 25003 Hz is an ultrasonic frequency.


What is the mathematical formulation?


sin(2 * pi * f_1 * t) + sin(2 * pi * f_2 * t)
or
2 * cos( pi * (f_1 - f_2) * t ) * sin( pi * (f_1 + f_2) * t )

So every cubic micrometre of the air (or another medium)
is vibrating in accordance with
2 * cos( 2 * pi * 3 * t ) * sin(2 * pi * 25003 * t ),
thus having a beat frequency of 2*3 = 6 Hz


How do you arrive at a "beat"?
Hint: Any such assessment is nonlinear.
(And kudos to you that you can do the math.)

Simplifying the math:
x = cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])
(Where a = 2 * pi * f_1 * t and b = same but f_2.)
All three of the above are equivalent. There is no difference.
You get x if you add two sine waves or if you
multiply two (different) sine waves.
So which is it really? Hint: If all you have is x then
you can't tell how it was generated.

What you do with it afterwards can make a
difference.

and a vibration frequency of 25003 Hz
(let alone phase differences of neighbouring
vibrating elements).

gr, Hein




 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 301 July 20th 07 07:10 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 39 July 3rd 07 05:52 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Shortwave 17 July 3rd 07 05:37 AM
DC waves??? Magic frequency??? Peter O. Brackett Antenna 19 May 24th 07 10:07 PM
Electromagnetic frequency allocations in xml ? [email protected] General 0 December 10th 05 05:47 PM


All times are GMT +1. The time now is 06:50 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017