Home |
Search |
Today's Posts |
#71
![]() |
|||
|
|||
![]()
On Mon, 09 Apr 2007 18:01:05 GMT, Gene Fuller
wrote: You are quite prolific at manufacturing even more crystalline spheres. Hi Gene, Wait until they are embroidered with epicycles. 73's Richard Clark, KB7QHC |
#72
![]() |
|||
|
|||
![]() Richard Fry wrote: "Cecil Moore" Still there are those nagging assertions of Born and Wolf that for two equal magnitude signals, the total intensity possible for incoherent signals is double the intensity of one signal. The total intensity possible for coherent signals is four times the intensity of one signal. ________ It is a fairly common practice in broadcast designs to combine the outputs of two r-f amplifiers of equal power rating, using a 4-port, 3 dB coaxial hybrid. The two amplifiers are driven by a single exciter through a suitable splitter. The antenna connects to one output port of the hybrid, and the other output port is connected to a dummy load. When the relative r-f phases of the two txs are suitably set, the antenna connection of the hybrid receives the total output power of the two txs, and the dummy load port receives zero. When the relative r-f phases of the txs are changed by 90 degrees from that setting, then the conditions at the output ports are reversed. The total average power available at the hybrid output for both of these conditions is twice that of a single tx without the hybrid. Does the quote from Born and Wolf support this? RF The quote from Born and Wolf that Cecil cites supports the 'profound' notion that (E1 + E2)^2 / (E1 + E2) = 4. 73, Jim AC6XG |
#73
![]() |
|||
|
|||
![]()
Gene Fuller wrote:
I am still waiting to learn the technical details of "cancellation", including the proper units and the characteristic equations. There has been deafening silence in response to my similar query about "interference". I have posted the details of cancellation more than once and you haven't disagreed except in an ad hominem way with zero technical content. Once again here is the S-Parameter equation for the reflected wave at a Z0-match impedance discontinuity in a transmission line: b1 = s11(a1) + s12(a2) = 0 b1 is the normalized reflected voltage at the Z0-match. |b1|^2 is the reflected power in the direction of the source. s11(a1) is the normalized external reflected voltage at the Z0-match. s12(a2) is the normalized internal reflected voltage making it through the Z0-match back from the mismatched load. Since b1 = 0, s11(a1) and s12(a2) have canceled. s11(a1) and s12(a2) are of equal magnitudes and opposite phases. Those waves are canceled toward the source. Their combined energy components join the forward wave toward the load. Wave cancellation is what happens when a ham tunes his antenna tuner for zero reflected power. I dare say you have engaged in that very behavior leading up to wave cancellation of reflections in the direction of the source. -- 73, Cecil http://www.w5dxp.com |
#74
![]() |
|||
|
|||
![]()
Jim Kelley wrote:
The quote from Born and Wolf that Cecil cites supports the 'profound' notion that (E1 + E2)^2 / (E1 + E2) = 4. There sure appears to be something wrong with that equation, Jim. If E1 = E2 = 1 volt, then you have 4 / 2 = 4 which seems a bit wrong, if you don't mind me saying so. What dimensions does your '4' above have? Seems it would have to be 4 volts. Assuming E1 = E2, I think what you meant to say was: (E1 + E2)^2 / E1^2 = 4 (dimensionless) which is what Born and Wolf say in equation (17) chapter 7. Please note that is total constructive interference as defined by Hecht in "Optics" Also please note that if those signals are the opposite phase: (E1 - E2)^2 / E1^2 = 0 That's total destructive interference as defined by Hecht. -- 73, Cecil http://www.w5dxp.com |
#75
![]() |
|||
|
|||
![]() Cecil Moore wrote: Richard Clark wrote: Walter Maxwell wrote: It is true, however, that two non-coherent fields from two different sources would just plow through each other with no effect on either. Does the binary transition from a one micro-degree longer cycle (non-coherent) to 0 (coherence) same length cycle really plunge us into a new physical reality of waves colliding with rebounds and caroms where formerly there was absolutely no interaction before? Of course, you are being facetious but the answer is simple. If the two signals are mutually incoherent, they don't interfere. Permanent wave cancellation is impossible between two waves that are not coherent. Hecht in "Optics" devotes an entire chapter to the "Basics of Coherence Theory". So do Born and Wolf in "Principles of Optics". Here is what Walt was obviously saying except in Born and Wolf's words: "If the two beams originate in the same source, the fluctuations in the two beams are in general correlated, and the beams are said to be completely or partially *coherent* depending on whether the correlation is complete or partial. In beams from different sources, the fluctuations are completely uncorrelated, and the beams are said to be mutually *incoherent*. When such beams from different sources are superposed, no interference is observed under ordinary experimental conditions, the total intensity being everywhere the sum of the intensities of the individual beams." In case you missed it, that says *NO INTERFERENCE* between mutually incoherent waves. Seems reasonable to say that "no interference" means the same thing as "no effect". The last paragraph above is a perfect example of your tendancy to misinterpret these texts, Cecil. Born and Wolf does not (and would not) assert that there is "no effect" when mutually incoherent waves are superposed. It's not reasonable to say that. There is certainly an effect. In fact Walt and I use the effect whenever we tune our basses. An illustration can be viewed at: http://www.kettering.edu/~drussell/D...rposition.html 73, Jim AC6XG |
#76
![]() |
|||
|
|||
![]() Cecil Moore wrote: With mutually coherent equal-magnitude sources, the maximum possible peak intensity is four times the intensity of a single wave, i.e. there is total constructive interference. (This can happen at a Z0-match in an RF transmission line.) For "largely coherent sources" the peak intensity would be slightly less than four times. So according to your theory I can take a 1 watt laser, split the beam into two coherent beams, recombine the beams in-phase together along the same path thus creating constructive interference, and obtain 2 watts of laser power. Or would it be 4 watts? :-) ac6xg |
#77
![]() |
|||
|
|||
![]() Cecil Moore wrote: Jim Kelley wrote: The quote from Born and Wolf that Cecil cites supports the 'profound' notion that (E1 + E2)^2 / (E1 + E2) = 4. There sure appears to be something wrong with that equation, Jim. If E1 = E2 = 1 volt, then you have 4 / 2 = 4 which seems a bit wrong, if you don't mind me saying so. What dimensions does your '4' above have? Seems it would have to be 4 volts. Assuming E1 = E2, I think what you meant to say was: (E1 + E2)^2 / E1^2 = 4 (dimensionless) which is what Born and Wolf say in equation (17) chapter 7. Please note that is total constructive interference as defined by Hecht in "Optics" Also please note that if those signals are the opposite phase: (E1 - E2)^2 / E1^2 = 0 That's total destructive interference as defined by Hecht. Right. So do you get the point, or not? 73, ac6xg |
#78
![]() |
|||
|
|||
![]()
Jim Kelley wrote:
The last paragraph above is a perfect example of your tendancy to misinterpret these texts, Cecil. Born and Wolf does not (and would not) assert that there is "no effect" when mutually incoherent waves are superposed. It's not reasonable to say that. There is certainly an effect. In fact Walt and I use the effect whenever we tune our basses. One wave has no effect on the other wave, Jim. Please pay attention. -- 73, Cecil http://www.w5dxp.com |
#79
![]() |
|||
|
|||
![]() "Keith Dysart" wrote The promoters of junk science fulfill an important role in this process and I can't decide if their net effect is good or bad. The bad effects are, of course, when they successfully lead others astray. On the whole, good or bad? I haven't decided. Keith, I really like when junk science gurus exibit constructive interference, the bafflegab sums to four times the normal power! Mike W5CHR |
#80
![]() |
|||
|
|||
![]()
Jim Kelley wrote:
So according to your theory I can take a 1 watt laser, split the beam into two coherent beams, recombine the beams in-phase together along the same path thus creating constructive interference, and obtain 2 watts of laser power. Or would it be 4 watts? If it were total constructive interference, two 1/2W beams would yield an intensity of 2 watts. Of course, at another location, total destructive interference would have to occur where the intensity was zero. Put another way, the bright interference rings would contain two watts per unit area while the flat black rings would contain zero watts per unit area thus averaging out to the original total of one watt. As I said before, this ain't rocket science. -- 73, Cecil http://www.w5dxp.com |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
Interference | Shortwave | |||
Interference | Shortwave | |||
BPL interference | Shortwave | |||
FM Interference when the sun comes up | Broadcasting | |||
Interference | Shortwave |