Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. |
#2
![]() |
|||
|
|||
![]() When AM is correctly accomplished (a single voiceband signal is modulated onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. A peak detector is best understood in the time domain, try to create a simple description in the frequency domain and you can only cause confusion and incorrect conclusions. |
#3
![]() |
|||
|
|||
![]() "Don Bowey" wrote in message ... On 7/4/07 10:16 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated The questions I posed were not about AM. The subject could have been viewed as DSB but that wasn't the specific intent either. onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. |
#4
![]() |
|||
|
|||
![]()
On 7/4/07 8:42 PM, in article , "Ron
Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 10:16 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated The questions I posed were not about AM. The subject could have been viewed as DSB but that wasn't the specific intent either. You should take some time to more carefully frame your questions. Do you understand that a DSB signal *is* AM? Post your intention; it might help. onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. |
#5
![]() |
|||
|
|||
![]() "Don Bowey" wrote in message ... On 7/4/07 8:42 PM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 10:16 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated The questions I posed were not about AM. The subject could have been viewed as DSB but that wasn't the specific intent either. You should take some time to more carefully frame your questions. Do you understand that a DSB signal *is* AM? So all the AM broadcasters are wasting money by generating a carrier? Post your intention; it might help. onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. |
#6
![]() |
|||
|
|||
![]()
On 7/7/07 9:17 PM, in article , "Ron
Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 8:42 PM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 10:16 AM, in article , "Ron Baker, Pluralitas!" wrote: "Don Bowey" wrote in message ... On 7/4/07 7:52 AM, in article , "Ron Baker, Pluralitas!" wrote: snip cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b]) Basically: multiplying two sine waves is the same as adding the (half amplitude) sum and difference frequencies. No, they aren't the same at all, they only appear to be the same before they are examined. The two sidebands will not have the correct phase relationship. What do you mean? What is the "correct" relationship? One could, temporarily, mistake the added combination for a full carrier with independent sidebands, however. (For sines it is sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b]) = 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees]) = 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees]) ) -- rb When AM is correctly accomplished (a single voiceband signal is modulated The questions I posed were not about AM. The subject could have been viewed as DSB but that wasn't the specific intent either. You should take some time to more carefully frame your questions. Do you understand that a DSB signal *is* AM? So all the AM broadcasters are wasting money by generating a carrier? You are an ignorant, useless troll, and not worth my time Post your intention; it might help. onto a carrier via a non-linear process), at an envelope detector the two sidebands will be additive. But if you independe ntly place a carrier at frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1 kHz), the composite can look like an AM signal, but it is not, and only by the most extreme luck will the sidebands be additive at the detector. They would probably cycle between additive and subtractive since they have no real relationship and were not the result of amplitude modulation. |
#7
![]() |
|||
|
|||
![]() "Ron Baker, Pluralitas!" wrote in message ... Do you understand that a DSB signal *is* AM? So all the AM broadcasters are wasting money by generating a carrier? How did you jump to that conclusion. |
#8
![]() |
|||
|
|||
![]()
On Jul 7, 9:56 pm, "Dana" wrote:
"Ron Baker, Pluralitas!" wrote in om... Do you understand that a DSB signal *is* AM? - - - So all the AM broadcasters are wasting money by - - generating a carrier? - - How did you jump to that conclusion. Somewhere between the Original Post #1 and the 236 Replies to date. ~ RHF |
#9
![]() |
|||
|
|||
![]() "Dana" wrote in message ... "Ron Baker, Pluralitas!" wrote in message ... Do you understand that a DSB signal *is* AM? So all the AM broadcasters are wasting money by generating a carrier? How did you jump to that conclusion. Is "DSBSC" DSB? |
#10
![]() |
|||
|
|||
![]() "Ron Baker, Pluralitas!" wrote in message ... "Dana" wrote in message ... "Ron Baker, Pluralitas!" wrote in message ... Do you understand that a DSB signal *is* AM? So all the AM broadcasters are wasting money by generating a carrier? How did you jump to that conclusion. Is "DSBSC" DSB? Why can't you answer the question? How or why do you think AM broadcasters are wasting money by generating a carrier?? |
Reply |
|
Thread Tools | Search this Thread |
Display Modes | |
|
|