Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Old July 5th 07, 05:40 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...

snip


After you get done talking about modulation and sidebands, somebody
might want to take a stab at explaining why, if you tune a receiver to
the second harmonic (or any other harmonic) of a modulated carrier (AM
or FM; makes no difference), the audio comes out sounding exactly as it
does if you tune to the fundamental? That is, while the second harmonic
of the carrier is twice the frequency of the fundamental, the sidebands
of the second harmonic are *not* located at twice the frequencies of
the
sidebands of the fundamental, but rather precisely as far from the
second harmonic of the carrier as they are from the fundamental.

Isaac

Whoa. I thought you were smoking something but
my curiosity is piqued.
I tried shortwave stations and heard no harmonics.
But that could be blamed on propagation.
There is an AM station here at 1.21 MHz that is s9+20dB.
Tuned to 2.42 MHz. Nothing. Generally the lowest
harmonics should be strongest. Then I remembered
that many types of non-linearity favor odd harmonics.
Tuned to 3.63 MHz. Holy harmonics, batman.
There it was and the modulation was not multiplied!
Voices sounded normal pitch. When music was
played the pitch was the same on the original and
the harmonic.

One clue is that the effect comes and goes rather
abruptly. It seems to switch in and out rather
than fade in an out. Maybe the coming and going
is from switching the audio material source?

This is strange. If a signal is multiplied then the sidebands
should be multiplied too.
Maybe the carrier generator is generating a
harmonic and the harmonic is also being modulated
with the normal audio in the modulator.
But then that signal would have to make it through
the power amp and the antenna. Possible, but
why would it come and go?
Strange.


Hint: Modulation is a "rate effect".

Isaac


Please elaborate. I am so eager to hear the
explanation.


The sidebands only show up because there is a rate of change of the
carrier -- amplitude or frequency/phase, depending; they aren't
separate, stand-alone signals. Since the rate of change of the amplitude
of the second harmonic is identical to that of the fundamental, the
sidebands show up the same distance away, not twice as distant.

Isaac
  #2   Report Post  
Old July 6th 07, 06:01 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...

snip


After you get done talking about modulation and sidebands, somebody
might want to take a stab at explaining why, if you tune a receiver
to
the second harmonic (or any other harmonic) of a modulated carrier
(AM
or FM; makes no difference), the audio comes out sounding exactly as
it
does if you tune to the fundamental? That is, while the second
harmonic
of the carrier is twice the frequency of the fundamental, the
sidebands
of the second harmonic are *not* located at twice the frequencies of
the
sidebands of the fundamental, but rather precisely as far from the
second harmonic of the carrier as they are from the fundamental.

Isaac

Whoa. I thought you were smoking something but
my curiosity is piqued.
I tried shortwave stations and heard no harmonics.
But that could be blamed on propagation.
There is an AM station here at 1.21 MHz that is s9+20dB.
Tuned to 2.42 MHz. Nothing. Generally the lowest
harmonics should be strongest. Then I remembered
that many types of non-linearity favor odd harmonics.
Tuned to 3.63 MHz. Holy harmonics, batman.
There it was and the modulation was not multiplied!
Voices sounded normal pitch. When music was
played the pitch was the same on the original and
the harmonic.

One clue is that the effect comes and goes rather
abruptly. It seems to switch in and out rather
than fade in an out. Maybe the coming and going
is from switching the audio material source?

This is strange. If a signal is multiplied then the sidebands
should be multiplied too.
Maybe the carrier generator is generating a
harmonic and the harmonic is also being modulated
with the normal audio in the modulator.
But then that signal would have to make it through
the power amp and the antenna. Possible, but
why would it come and go?
Strange.

Hint: Modulation is a "rate effect".

Isaac


Please elaborate. I am so eager to hear the
explanation.


The sidebands only show up because there is a rate of change of the
carrier -- amplitude or frequency/phase, depending; they aren't
separate, stand-alone signals. Since the rate of change of the amplitude
of the second harmonic is identical to that of the fundamental, the
sidebands show up the same distance away, not twice as distant.

Isaac


That doesn't explain why the effect would
come and go.
But once again you have surprised me.
Your explanation of the non-multiplied sidebands,
while qualitative and incomplete, is sound.
It looks to me that the tripple frequency sidebands
are there but the basic sidebands dominate.
Especially at lower modulation indexes.



  #3   Report Post  
Old July 6th 07, 08:31 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...

snip


After you get done talking about modulation and sidebands, somebody
might want to take a stab at explaining why, if you tune a receiver
to
the second harmonic (or any other harmonic) of a modulated carrier
(AM
or FM; makes no difference), the audio comes out sounding exactly as
it
does if you tune to the fundamental? That is, while the second
harmonic
of the carrier is twice the frequency of the fundamental, the
sidebands
of the second harmonic are *not* located at twice the frequencies of
the
sidebands of the fundamental, but rather precisely as far from the
second harmonic of the carrier as they are from the fundamental.

Isaac

Whoa. I thought you were smoking something but
my curiosity is piqued.
I tried shortwave stations and heard no harmonics.
But that could be blamed on propagation.
There is an AM station here at 1.21 MHz that is s9+20dB.
Tuned to 2.42 MHz. Nothing. Generally the lowest
harmonics should be strongest. Then I remembered
that many types of non-linearity favor odd harmonics.
Tuned to 3.63 MHz. Holy harmonics, batman.
There it was and the modulation was not multiplied!
Voices sounded normal pitch. When music was
played the pitch was the same on the original and
the harmonic.

One clue is that the effect comes and goes rather
abruptly. It seems to switch in and out rather
than fade in an out. Maybe the coming and going
is from switching the audio material source?

This is strange. If a signal is multiplied then the sidebands
should be multiplied too.
Maybe the carrier generator is generating a
harmonic and the harmonic is also being modulated
with the normal audio in the modulator.
But then that signal would have to make it through
the power amp and the antenna. Possible, but
why would it come and go?
Strange.

Hint: Modulation is a "rate effect".

Isaac

Please elaborate. I am so eager to hear the
explanation.


The sidebands only show up because there is a rate of change of the
carrier -- amplitude or frequency/phase, depending; they aren't
separate, stand-alone signals. Since the rate of change of the amplitude
of the second harmonic is identical to that of the fundamental, the
sidebands show up the same distance away, not twice as distant.

Isaac


That doesn't explain why the effect would come and go.


I don't understand what effect you're referring to here.

But once again you have surprised me.
Your explanation of the non-multiplied sidebands,
while qualitative and incomplete, is sound.


I'm a physicist/engineer, and have been for a long time. I have always
maintained that if the only way one can understand physical phenomena is
by solving the differential equations that describe them, then one does
not understand the phenomena at all. If you can express a thing in
words, such that a person with little mathematical ability can
understand what's going on, *then* you have a good grasp of it.

It looks to me that the tripple frequency sidebands
are there but the basic sidebands dominate.
Especially at lower modulation indexes.


I don't understand what you are saying here either. And in my
experience, the term "modulation index" is more likely to show up in a
discussion of FM or PM than AM; are you using it interchangeably with
"modulation percentage"?

Isaac
  #4   Report Post  
Old July 7th 07, 04:16 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"isw" wrote in message
...

snip


After you get done talking about modulation and sidebands,
somebody
might want to take a stab at explaining why, if you tune a
receiver
to
the second harmonic (or any other harmonic) of a modulated
carrier
(AM
or FM; makes no difference), the audio comes out sounding exactly
as
it
does if you tune to the fundamental? That is, while the second
harmonic
of the carrier is twice the frequency of the fundamental, the
sidebands
of the second harmonic are *not* located at twice the frequencies
of
the
sidebands of the fundamental, but rather precisely as far from
the
second harmonic of the carrier as they are from the fundamental.

Isaac

Whoa. I thought you were smoking something but
my curiosity is piqued.
I tried shortwave stations and heard no harmonics.
But that could be blamed on propagation.
There is an AM station here at 1.21 MHz that is s9+20dB.
Tuned to 2.42 MHz. Nothing. Generally the lowest
harmonics should be strongest. Then I remembered
that many types of non-linearity favor odd harmonics.
Tuned to 3.63 MHz. Holy harmonics, batman.
There it was and the modulation was not multiplied!
Voices sounded normal pitch. When music was
played the pitch was the same on the original and
the harmonic.

One clue is that the effect comes and goes rather
abruptly. It seems to switch in and out rather
than fade in an out. Maybe the coming and going
is from switching the audio material source?

This is strange. If a signal is multiplied then the sidebands
should be multiplied too.
Maybe the carrier generator is generating a
harmonic and the harmonic is also being modulated
with the normal audio in the modulator.
But then that signal would have to make it through
the power amp and the antenna. Possible, but
why would it come and go?
Strange.

Hint: Modulation is a "rate effect".

Isaac

Please elaborate. I am so eager to hear the
explanation.

The sidebands only show up because there is a rate of change of the
carrier -- amplitude or frequency/phase, depending; they aren't
separate, stand-alone signals. Since the rate of change of the
amplitude
of the second harmonic is identical to that of the fundamental, the
sidebands show up the same distance away, not twice as distant.

Isaac


That doesn't explain why the effect would come and go.


I don't understand what effect you're referring to here.


When I was tuned to the 3rd harmonic sometimes
I would hear it and sometimes not.
It would come and go rather abruptly. It didn't seem
to be gradual fading.


But once again you have surprised me.
Your explanation of the non-multiplied sidebands,
while qualitative and incomplete, is sound.


I'm a physicist/engineer, and have been for a long time. I have always


The you understand Fourier transforms and convolution.

maintained that if the only way one can understand physical phenomena is
by solving the differential equations that describe them, then one does
not understand the phenomena at all. If you can express a thing in
words, such that a person with little mathematical ability can
understand what's going on, *then* you have a good grasp of it.


I too am a fan of the intuitive approach.
But I find that theory is often irreplacable.


It looks to me that the tripple frequency sidebands
are there but the basic sidebands dominate.
Especially at lower modulation indexes.


I don't understand what you are saying here either. And in my
experience, the term "modulation index" is more likely to show up in a
discussion of FM or PM than AM; are you using it interchangeably with
"modulation percentage"?


http://en.wikipedia.org/wiki/Amplitu...dulation_index



Isaac



  #5   Report Post  
Old July 7th 07, 08:56 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

In article ,
"Ron Baker, Pluralitas!" wrote:

--snippage--

That doesn't explain why the effect would come and go.


I don't understand what effect you're referring to here.


When I was tuned to the 3rd harmonic sometimes
I would hear it and sometimes not.
It would come and go rather abruptly. It didn't seem
to be gradual fading.


Especially if the RF field is strong, there are a lot of mechanisms
which can create harmonics after the signal leaves the transmitter --
rusty fencing, or tooth fillings, for example. I can see how one of
those could be intermittent.

But once again you have surprised me.
Your explanation of the non-multiplied sidebands,
while qualitative and incomplete, is sound.


I'm a physicist/engineer, and have been for a long time. I have always


The you understand Fourier transforms and convolution.


I suppose so; I've spent over fifteen years poking around in the
entrails of MPEG...

I don't understand what you are saying here either. And in my
experience, the term "modulation index" is more likely to show up in a
discussion of FM or PM than AM; are you using it interchangeably with
"modulation percentage"?


As I suspected -- just different words for the same thing.

So:

It looks to me that the tripple frequency sidebands
are there but the basic sidebands dominate.
Especially at lower modulation indexes.


With well-designed gear (or theoretically), for AM there will be no
other frequencies present except for the carrier and the ones
represented by the Fourier spectrum of the modulation -- one set either
side of the carrier. That is only true, of course, as long as there is
no overmodulation; that creates a *lot* of other junk, because there are
periods where the carrier is entirely cut off.

So I still don't understand what you mean by "triple frequency
sidebands" or "basic sidebands".

As I said in another post, modulation is a "rate effect", so there never
should be any frequencies generated at multiples of the sidebands
surrounding the fundamental; instead they are always identically as far
from the harmonics as they are from the fundamental. Is that what you
are calling "triple frequency sidebands"?

Isaac


  #6   Report Post  
Old July 7th 07, 09:37 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
DTC DTC is offline
external usenet poster
 
First recorded activity by RadioBanter: Jun 2007
Posts: 40
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-lowcarrier frequency

isw wrote:
Especially if the RF field is strong, there are a lot of mechanisms
which can create harmonics after the signal leaves the transmitter --
rusty fencing, or tooth fillings, for example.


What we used to call miscellaneous metallic junction intermod.
  #7   Report Post  
Old July 17th 07, 10:46 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Oct 2006
Posts: 48
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

isw wrote:
"Ron Baker, Pluralitas!" wrote:

Then you understand Fourier transforms and convolution.


I suppose so; I've spent over fifteen years poking around in the
entrails of MPEG...


Ever learned, unfortunately seldom used.
What can radio hobbyists do with Fourier transforms
nowadays? (Nowadays, for aids and appliances like
software and spectrum analysers take over some work.)
If somebody could provide some examples I'd be grateful.
Thanks.

gr, Hein


Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 39 July 3rd 07 05:52 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Shortwave 17 July 3rd 07 05:37 AM
DC waves??? Magic frequency??? Peter O. Brackett Antenna 19 May 24th 07 10:07 PM
Electromagnetic frequency allocations in xml ? [email protected] General 0 December 10th 05 05:47 PM
Which digital readout receivers always show the carrier frequency no matter what mode? Richard Shortwave 5 December 5th 04 12:14 AM


All times are GMT +1. The time now is 12:08 PM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017