Home |
Search |
Today's Posts |
|
#1
![]() |
|||
|
|||
![]()
In article ,
"Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... snip After you get done talking about modulation and sidebands, somebody might want to take a stab at explaining why, if you tune a receiver to the second harmonic (or any other harmonic) of a modulated carrier (AM or FM; makes no difference), the audio comes out sounding exactly as it does if you tune to the fundamental? That is, while the second harmonic of the carrier is twice the frequency of the fundamental, the sidebands of the second harmonic are *not* located at twice the frequencies of the sidebands of the fundamental, but rather precisely as far from the second harmonic of the carrier as they are from the fundamental. Isaac Whoa. I thought you were smoking something but my curiosity is piqued. I tried shortwave stations and heard no harmonics. But that could be blamed on propagation. There is an AM station here at 1.21 MHz that is s9+20dB. Tuned to 2.42 MHz. Nothing. Generally the lowest harmonics should be strongest. Then I remembered that many types of non-linearity favor odd harmonics. Tuned to 3.63 MHz. Holy harmonics, batman. There it was and the modulation was not multiplied! Voices sounded normal pitch. When music was played the pitch was the same on the original and the harmonic. One clue is that the effect comes and goes rather abruptly. It seems to switch in and out rather than fade in an out. Maybe the coming and going is from switching the audio material source? This is strange. If a signal is multiplied then the sidebands should be multiplied too. Maybe the carrier generator is generating a harmonic and the harmonic is also being modulated with the normal audio in the modulator. But then that signal would have to make it through the power amp and the antenna. Possible, but why would it come and go? Strange. Hint: Modulation is a "rate effect". Isaac Please elaborate. I am so eager to hear the explanation. The sidebands only show up because there is a rate of change of the carrier -- amplitude or frequency/phase, depending; they aren't separate, stand-alone signals. Since the rate of change of the amplitude of the second harmonic is identical to that of the fundamental, the sidebands show up the same distance away, not twice as distant. Isaac |
#2
![]() |
|||
|
|||
![]() "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... snip After you get done talking about modulation and sidebands, somebody might want to take a stab at explaining why, if you tune a receiver to the second harmonic (or any other harmonic) of a modulated carrier (AM or FM; makes no difference), the audio comes out sounding exactly as it does if you tune to the fundamental? That is, while the second harmonic of the carrier is twice the frequency of the fundamental, the sidebands of the second harmonic are *not* located at twice the frequencies of the sidebands of the fundamental, but rather precisely as far from the second harmonic of the carrier as they are from the fundamental. Isaac Whoa. I thought you were smoking something but my curiosity is piqued. I tried shortwave stations and heard no harmonics. But that could be blamed on propagation. There is an AM station here at 1.21 MHz that is s9+20dB. Tuned to 2.42 MHz. Nothing. Generally the lowest harmonics should be strongest. Then I remembered that many types of non-linearity favor odd harmonics. Tuned to 3.63 MHz. Holy harmonics, batman. There it was and the modulation was not multiplied! Voices sounded normal pitch. When music was played the pitch was the same on the original and the harmonic. One clue is that the effect comes and goes rather abruptly. It seems to switch in and out rather than fade in an out. Maybe the coming and going is from switching the audio material source? This is strange. If a signal is multiplied then the sidebands should be multiplied too. Maybe the carrier generator is generating a harmonic and the harmonic is also being modulated with the normal audio in the modulator. But then that signal would have to make it through the power amp and the antenna. Possible, but why would it come and go? Strange. Hint: Modulation is a "rate effect". Isaac Please elaborate. I am so eager to hear the explanation. The sidebands only show up because there is a rate of change of the carrier -- amplitude or frequency/phase, depending; they aren't separate, stand-alone signals. Since the rate of change of the amplitude of the second harmonic is identical to that of the fundamental, the sidebands show up the same distance away, not twice as distant. Isaac That doesn't explain why the effect would come and go. But once again you have surprised me. Your explanation of the non-multiplied sidebands, while qualitative and incomplete, is sound. It looks to me that the tripple frequency sidebands are there but the basic sidebands dominate. Especially at lower modulation indexes. |
#3
![]() |
|||
|
|||
![]()
In article ,
"Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... snip After you get done talking about modulation and sidebands, somebody might want to take a stab at explaining why, if you tune a receiver to the second harmonic (or any other harmonic) of a modulated carrier (AM or FM; makes no difference), the audio comes out sounding exactly as it does if you tune to the fundamental? That is, while the second harmonic of the carrier is twice the frequency of the fundamental, the sidebands of the second harmonic are *not* located at twice the frequencies of the sidebands of the fundamental, but rather precisely as far from the second harmonic of the carrier as they are from the fundamental. Isaac Whoa. I thought you were smoking something but my curiosity is piqued. I tried shortwave stations and heard no harmonics. But that could be blamed on propagation. There is an AM station here at 1.21 MHz that is s9+20dB. Tuned to 2.42 MHz. Nothing. Generally the lowest harmonics should be strongest. Then I remembered that many types of non-linearity favor odd harmonics. Tuned to 3.63 MHz. Holy harmonics, batman. There it was and the modulation was not multiplied! Voices sounded normal pitch. When music was played the pitch was the same on the original and the harmonic. One clue is that the effect comes and goes rather abruptly. It seems to switch in and out rather than fade in an out. Maybe the coming and going is from switching the audio material source? This is strange. If a signal is multiplied then the sidebands should be multiplied too. Maybe the carrier generator is generating a harmonic and the harmonic is also being modulated with the normal audio in the modulator. But then that signal would have to make it through the power amp and the antenna. Possible, but why would it come and go? Strange. Hint: Modulation is a "rate effect". Isaac Please elaborate. I am so eager to hear the explanation. The sidebands only show up because there is a rate of change of the carrier -- amplitude or frequency/phase, depending; they aren't separate, stand-alone signals. Since the rate of change of the amplitude of the second harmonic is identical to that of the fundamental, the sidebands show up the same distance away, not twice as distant. Isaac That doesn't explain why the effect would come and go. I don't understand what effect you're referring to here. But once again you have surprised me. Your explanation of the non-multiplied sidebands, while qualitative and incomplete, is sound. I'm a physicist/engineer, and have been for a long time. I have always maintained that if the only way one can understand physical phenomena is by solving the differential equations that describe them, then one does not understand the phenomena at all. If you can express a thing in words, such that a person with little mathematical ability can understand what's going on, *then* you have a good grasp of it. It looks to me that the tripple frequency sidebands are there but the basic sidebands dominate. Especially at lower modulation indexes. I don't understand what you are saying here either. And in my experience, the term "modulation index" is more likely to show up in a discussion of FM or PM than AM; are you using it interchangeably with "modulation percentage"? Isaac |
#4
![]() |
|||
|
|||
![]() "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... In article , "Ron Baker, Pluralitas!" wrote: "isw" wrote in message ... snip After you get done talking about modulation and sidebands, somebody might want to take a stab at explaining why, if you tune a receiver to the second harmonic (or any other harmonic) of a modulated carrier (AM or FM; makes no difference), the audio comes out sounding exactly as it does if you tune to the fundamental? That is, while the second harmonic of the carrier is twice the frequency of the fundamental, the sidebands of the second harmonic are *not* located at twice the frequencies of the sidebands of the fundamental, but rather precisely as far from the second harmonic of the carrier as they are from the fundamental. Isaac Whoa. I thought you were smoking something but my curiosity is piqued. I tried shortwave stations and heard no harmonics. But that could be blamed on propagation. There is an AM station here at 1.21 MHz that is s9+20dB. Tuned to 2.42 MHz. Nothing. Generally the lowest harmonics should be strongest. Then I remembered that many types of non-linearity favor odd harmonics. Tuned to 3.63 MHz. Holy harmonics, batman. There it was and the modulation was not multiplied! Voices sounded normal pitch. When music was played the pitch was the same on the original and the harmonic. One clue is that the effect comes and goes rather abruptly. It seems to switch in and out rather than fade in an out. Maybe the coming and going is from switching the audio material source? This is strange. If a signal is multiplied then the sidebands should be multiplied too. Maybe the carrier generator is generating a harmonic and the harmonic is also being modulated with the normal audio in the modulator. But then that signal would have to make it through the power amp and the antenna. Possible, but why would it come and go? Strange. Hint: Modulation is a "rate effect". Isaac Please elaborate. I am so eager to hear the explanation. The sidebands only show up because there is a rate of change of the carrier -- amplitude or frequency/phase, depending; they aren't separate, stand-alone signals. Since the rate of change of the amplitude of the second harmonic is identical to that of the fundamental, the sidebands show up the same distance away, not twice as distant. Isaac That doesn't explain why the effect would come and go. I don't understand what effect you're referring to here. When I was tuned to the 3rd harmonic sometimes I would hear it and sometimes not. It would come and go rather abruptly. It didn't seem to be gradual fading. But once again you have surprised me. Your explanation of the non-multiplied sidebands, while qualitative and incomplete, is sound. I'm a physicist/engineer, and have been for a long time. I have always The you understand Fourier transforms and convolution. maintained that if the only way one can understand physical phenomena is by solving the differential equations that describe them, then one does not understand the phenomena at all. If you can express a thing in words, such that a person with little mathematical ability can understand what's going on, *then* you have a good grasp of it. I too am a fan of the intuitive approach. But I find that theory is often irreplacable. It looks to me that the tripple frequency sidebands are there but the basic sidebands dominate. Especially at lower modulation indexes. I don't understand what you are saying here either. And in my experience, the term "modulation index" is more likely to show up in a discussion of FM or PM than AM; are you using it interchangeably with "modulation percentage"? http://en.wikipedia.org/wiki/Amplitu...dulation_index Isaac |
#5
![]() |
|||
|
|||
![]()
In article ,
"Ron Baker, Pluralitas!" wrote: --snippage-- That doesn't explain why the effect would come and go. I don't understand what effect you're referring to here. When I was tuned to the 3rd harmonic sometimes I would hear it and sometimes not. It would come and go rather abruptly. It didn't seem to be gradual fading. Especially if the RF field is strong, there are a lot of mechanisms which can create harmonics after the signal leaves the transmitter -- rusty fencing, or tooth fillings, for example. I can see how one of those could be intermittent. But once again you have surprised me. Your explanation of the non-multiplied sidebands, while qualitative and incomplete, is sound. I'm a physicist/engineer, and have been for a long time. I have always The you understand Fourier transforms and convolution. I suppose so; I've spent over fifteen years poking around in the entrails of MPEG... I don't understand what you are saying here either. And in my experience, the term "modulation index" is more likely to show up in a discussion of FM or PM than AM; are you using it interchangeably with "modulation percentage"? As I suspected -- just different words for the same thing. So: It looks to me that the tripple frequency sidebands are there but the basic sidebands dominate. Especially at lower modulation indexes. With well-designed gear (or theoretically), for AM there will be no other frequencies present except for the carrier and the ones represented by the Fourier spectrum of the modulation -- one set either side of the carrier. That is only true, of course, as long as there is no overmodulation; that creates a *lot* of other junk, because there are periods where the carrier is entirely cut off. So I still don't understand what you mean by "triple frequency sidebands" or "basic sidebands". As I said in another post, modulation is a "rate effect", so there never should be any frequencies generated at multiples of the sidebands surrounding the fundamental; instead they are always identically as far from the harmonics as they are from the fundamental. Is that what you are calling "triple frequency sidebands"? Isaac |
#6
![]() |
|||
|
|||
![]()
isw wrote:
Especially if the RF field is strong, there are a lot of mechanisms which can create harmonics after the signal leaves the transmitter -- rusty fencing, or tooth fillings, for example. What we used to call miscellaneous metallic junction intermod. |
#7
![]() |
|||
|
|||
![]()
isw wrote:
"Ron Baker, Pluralitas!" wrote: Then you understand Fourier transforms and convolution. I suppose so; I've spent over fifteen years poking around in the entrails of MPEG... Ever learned, unfortunately seldom used. What can radio hobbyists do with Fourier transforms nowadays? (Nowadays, for aids and appliances like software and spectrum analysers take over some work.) If somebody could provide some examples I'd be grateful. Thanks. gr, Hein |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|