Home |
Search |
Today's Posts |
#11
![]() |
|||
|
|||
![]()
On 9/28/2015 8:09 PM, rickman wrote:
On 9/28/2015 7:55 PM, Jerry Stuckle wrote: On 9/28/2015 5:18 PM, rickman wrote: On 9/28/2015 4:34 PM, Jerry Stuckle wrote: On 9/28/2015 4:14 PM, rickman wrote: On 9/28/2015 4:07 PM, Jerry Stuckle wrote: On 9/28/2015 3:22 PM, Wayne wrote: "Jerry Stuckle" wrote in message ... On 9/28/2015 2:27 PM, Wayne wrote: "Jerry Stuckle" wrote in message ... On 9/28/2015 12:47 PM, rickman wrote: On 9/28/2015 10:38 AM, Jerry Stuckle wrote: On 9/28/2015 12:03 AM, rickman wrote: On 9/27/2015 10:39 PM, Jerry Stuckle wrote: On 9/27/2015 9:46 PM, Wayne wrote: From LUNA web site regarding optical measurements which should be no different from RF... It "shouldn't be" - but optical measurements are handled differently than electrical measurements. Fiber Optics have their own way of measuring loss, reflection and refraction (which doesn't exist in feedlines). That's like applying electrician's color codes to electronics. They both have color codes - but don't hook the electrician's black wire to ground - or the transformer's green wires to safety ground. I thought you would claim optical was different. That's why I included the VSWR vs return loss table link. You didn't comment on that. ![]() # I didn't because I thought it was obvious. But I guess not to you. # Return loss is calculated with logs. Logs of values 1 are negative. # And -10db is smaller than -5 db. # As the SWR approaches 1:1, the reflected power approaches 0, and the # returned loss approaches NEGATIVE infinity. Note that I said NEGATIVE # infinity. At the same point, the returned power measured in watts is 0. Return loss is a positive number for passive networks. The equation has (P out/P reflected). P out will never be less that P reflected, and thus return loss will never be negative. (for passive networks) As the SWR approaches 1:1, the return loss increases in a positive direction, finally reaching infinity. # No, return loss is calculated as P reflected / P out. P out is the # constant with varying load; P reflected is the variable. The ratio is # always less than one, hence the calculation is always negative DB. # Please point to a reliable source which agrees with you. I have never heard return loss expressed as a negative for passive RF networks. In fields other than RF I suppose anything is possible. Here are some references, searching only for RF definitions: http://www.ab4oj.com/atu/vswr.html http://www.mogami.com/e/cad/vswr.html http://www.microwaves101.com/encyclo...swr-calculator http://www.amphenolrf.com/vswr-conversion-chart/ From wikipedia: https://en.wikipedia.org/wiki/Return_loss Return loss is the negative of the magnitude of the reflection coefficient in dB. Since power is proportional to the square of the voltage, return loss is given by, (couldn't cut/paste the equation) Thus, a large positive return loss indicates the reflected power is small relative to the incident power, which indicates good impedance match from source to load. http://www.spectrum-soft.com/news/fall2009/vswr.shtm The return loss measurement describes the ratio of the power in the reflected wave to the power in the incident wave in units of decibels. The standard output for the return loss is a positive value, so a large return loss value actually means that the power in the reflected wave is small compared to the power in the incident wave and indicates a better impedance match. The return loss can be calculated from the reflection coefficient with the equation: I said RELIABLE SOURCE. Wikipedia and someone's blog are not what I would call reliable. How about IEEE, for instance? I provided the IEEE paper cited by wikipedia. Anyone care to pay for it? IEEE is seldom free. Who else will you accept? I'm not interested. I know what it says. Guess I should have kept up my IEEE membership, but it just wasn't worth it. So share with the rest of us. What does it say? Exactly what your table showed. But you mentioned the resource, not me. You pay for it or you've just once again you're full of it. You said you *know* what the IEEE article says. Why not share with us? You want it - you pay for it. Or once again you prove you're full of it. No, I have not read the article. But I understand the physics and math behind it - unlike you. Someone who thinks magnitude without vector (direction) is valid! ROFLMAO! -- ================== Remove the "x" from my email address Jerry, AI0K ================== |
Thread Tools | Search this Thread |
Display Modes | |
|
|
![]() |
||||
Thread | Forum | |||
OT Parallel to USB Cable | CB | |||
Parallel Lines | Antenna | |||
varicaps in parallel | Homebrew | |||
varicaps in parallel | Homebrew | |||
Parallel runs of coax to antenna | Antenna |