![]() |
On Thu, 25 Nov 2004 07:32:27 +0000, Ian White, G3SEK wrote:
Duncan Munro wrote: I have quite a surplus of them, so if you wish I can send one of each in the mail for you to check on your VNA. Those values seem surprisingly high, so yes, please do and I will measure them. OK, will post them off tomorrow night. I'll include the manufacturers info (they were bought recently from Mouser in the US), and put two of each in so that you can crack one of each value open and see what they're made of ;-) -- Duncan Munro http://www.duncanamps.com/ |
"James Bond" wrote in message ... are metal film resistors wirewound or not? I've been trying to find this one out. Someone who I know says they're not so are suitable for RF but Maplin catalog seems to say they are. Metal film or metal oxide? There is a big difference. High ohmic values are almost always Oxide types and these are usually the continuous layer type with the occasional 'trim'. Really low value metal film are also a continuous tube or nearly so. It is the upper half of the metal film rage (100R-100k) that is spiral cut & consequently of appreciable inductance. Unfortunately, these are the values that are most needed. |
matt wilson wrote:
"James Bond" wrote in message ... are metal film resistors wirewound or not? I've been trying to find this one out. Someone who I know says they're not so are suitable for RF but Maplin catalog seems to say they are. Metal film or metal oxide? There is a big difference. High ohmic values are almost always Oxide types and these are usually the continuous layer type with the occasional 'trim'. Really low value metal film are also a continuous tube or nearly so. It is the upper half of the metal film rage (100R-100k) that is spiral cut & consequently of appreciable inductance. Unfortunately, these are the values that are most needed. I think metal film resistors are made by depositing metal vapor onto ceramic rods in a vacuum. Then they are attached to metal end caps with leads and either laser or abrasive engraved to set the final resistance. Some have only a turn or two, some have more. They are a lot less inductive than wire wound devices, and the best low inductance versions have a serpentine pattern engraved in the film, to keep the inductance very low. e.g. http://www.caddock.com/Online_catalog/power/power.html -- John Popelish |
On Sat, 27 Nov 2004 19:31:37 -0500, John Popelish
wrote: d the best low inductance versions have a serpentine pattern engraved in the film, to keep the inductance very low. Yes, minimal inductance, but doesn't that pattern give rise to more parasitic capacitance? -- "What is now proved was once only imagin'd." - William Blake, 1793. |
Paul Burridge wrote:
On Sat, 27 Nov 2004 19:31:37 -0500, John Popelish wrote: d the best low inductance versions have a serpentine pattern engraved in the film, to keep the inductance very low. Yes, minimal inductance, but doesn't that pattern give rise to more parasitic capacitance? Some. More than an inductive pattern? Not much, if any. -- John Popelish |
Just a comment.
Even such a thing as a small 1/2-watt resistor has distributed R, L and C. L and C can be calculated from physical dimensions. A resistor can be treated as a helically-loaded transmission line in exactly the same way as a helically-loaded antenna. If the frequency is high enough the radiation resistance can be taken into account. Just calculate the input resistance of the line with a short circuit at the other end and the job is done. The performance of dummy-load resistors can be determined in the same way. If you (in the plural) are unable to do this then you are unworthy to call yourselves engineers. Whatever happened to your education? ;o) ---- Reg |
On Sun, 28 Nov 2004 12:23:04 +0000 (UTC), "Regosaurus"
wrote: Just a comment. Even such a thing as a small 1/2-watt resistor has distributed R, L and C. Indeed. L and C can be calculated from physical dimensions. Only if you have x-ray vision. The package gets in the way. A resistor can be treated as a helically-loaded transmission line in exactly the same way as a helically-loaded antenna. If the frequency is high enough the radiation resistance can be taken into account. Just calculate the input resistance of the line with a short circuit at the other end and the job is done. The performance of dummy-load resistors can be determined in the same way. If you (in the plural) are unable to do this then you are unworthy to call yourselves engineers. Whatever happened to your education? ;o) I've never described myself as an engineer. I'm not one! But if I wanted to checkout how suitable any given resistor was for a dummy load, I'd use a network analyser. -- "What is now proved was once only imagin'd." - William Blake, 1793. |
But if I
wanted to checkout how suitable any given resistor was for a dummy load, I'd use a network analyser. -- ================================ If the network analyser is a computer program you'll still need X-ray eyes. |
Avery, I too have had a similar career to yours. I cannot but agree with all
that you say. A very apt description. Regarding newsgroups - "Abandon all rank ye who enter here." (Toc-H, on the Western Front, 1916.) To summarise - To find what a resistor does , measure it. If you are unable to measure it then model it with lumped components and then calculate. If lumps are not accurate enough then model it as a distributed transmission line, which it actually is, and calculate again. If you get similar answers for both procedures then you are laughing. If you don't know how to do these things then you are not qualified to call yourself an engineer which I'll admit is slightly off-topic. But if the cap fits then wear it! ---- Regards, Reg. |
All times are GMT +1. The time now is 07:34 PM. |
Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
RadioBanter.com