Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Old July 4th 07, 03:52 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"Keith Dysart" wrote in message
ps.com...
On Jul 3, 2:07 pm, Keith Dysart wrote:
On Jul 3, 12:50 pm, John Fields wrote:





On Mon, 2 Jul 2007 23:03:36 -0700, "Ron Baker, Pluralitas!"


wrote:


"John Smith I" wrote in message
...
Radium wrote:


snip


Suppose you have a 1 MHz sine wave whose amplitude
is multiplied by a 0.1 MHz sine wave.
What would it look like on an oscilloscope?


snip

What would it look like on a spectrum analyzer?


| |
| | | |
--------+--------------------+-------+------+----
100kHz 0.9MHz 1MHz 1.1MHz


Then suppose you have a 1.1 MHz sine wave added
to a 0.9 MHz sine wave.
What would that look like on an oscilloscope?


snip

Tricky!!!


It looks like AM but it isn't, it's just the phases sliding past
each other slowly and algebraically adding which creates the
illusion.


What would that look like on a spectrum analyzer?


| |
| |
-----------------------------+--------------+----
0.9MHz 1.1MHz


--
JF


But if you remove the half volt bias you put on the
100 kHz signal in the multiplier version, the results
look exactly like the summed version, so I suggest
that results are the same when a 4 quadrant multiplier
is used.

And since the original request was for a "1 MHz sine
wave whose amplitude is multiplied by a 0.1 MHz sine
wave" I think a 4 quadrant multiplier is in order.

...Keith-


Ooops. I misspoke. They are not quite the same.

The spectrum is the same, but if you want to get exactly
the same result, the lower frequency needs a 90 degree
offset and the upper frequency needs a -90 degree offset.

And the amplitudes of the the sum and difference
frequencies need to be one half of the amplitude of
the frequencies being multiplied.

...Keith


You win.

When I conceived the problem I was thinking
cosines actually. In which case there are no
phase shifts to worry about in the result.

I also forgot the half amplitude factor.

While it might not be obvious, the two cases I
described are basically identical. And this
situation occurs in real life, i.e. in radio signals,
oceanography, and guitar tuning.

It follows from what is taught in high school
geometry.

cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb









  #2   Report Post  
Old July 4th 07, 05:02 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 286
Default AM electromagnetic waves: 20 KHz modulation frequency on anastronomically-low carrier frequency

On 7/4/07 7:52 AM, in article , "Ron
Baker, Pluralitas!" wrote:


"Keith Dysart" wrote in message
ps.com...
On Jul 3, 2:07 pm, Keith Dysart wrote:
On Jul 3, 12:50 pm, John Fields wrote:





On Mon, 2 Jul 2007 23:03:36 -0700, "Ron Baker, Pluralitas!"

wrote:

"John Smith I" wrote in message
...
Radium wrote:

snip

Suppose you have a 1 MHz sine wave whose amplitude
is multiplied by a 0.1 MHz sine wave.
What would it look like on an oscilloscope?

snip

What would it look like on a spectrum analyzer?

| |
| | | |
--------+--------------------+-------+------+----
100kHz 0.9MHz 1MHz 1.1MHz

Then suppose you have a 1.1 MHz sine wave added
to a 0.9 MHz sine wave.
What would that look like on an oscilloscope?

snip

Tricky!!!

It looks like AM but it isn't, it's just the phases sliding past
each other slowly and algebraically adding which creates the
illusion.

What would that look like on a spectrum analyzer?

| |
| |
-----------------------------+--------------+----
0.9MHz 1.1MHz

--
JF

But if you remove the half volt bias you put on the
100 kHz signal in the multiplier version, the results
look exactly like the summed version, so I suggest
that results are the same when a 4 quadrant multiplier
is used.

And since the original request was for a "1 MHz sine
wave whose amplitude is multiplied by a 0.1 MHz sine
wave" I think a 4 quadrant multiplier is in order.

...Keith-


Ooops. I misspoke. They are not quite the same.

The spectrum is the same, but if you want to get exactly
the same result, the lower frequency needs a 90 degree
offset and the upper frequency needs a -90 degree offset.

And the amplitudes of the the sum and difference
frequencies need to be one half of the amplitude of
the frequencies being multiplied.

...Keith


You win.

When I conceived the problem I was thinking
cosines actually. In which case there are no
phase shifts to worry about in the result.

I also forgot the half amplitude factor.

While it might not be obvious, the two cases I
described are basically identical. And this
situation occurs in real life, i.e. in radio signals,
oceanography, and guitar tuning.

It follows from what is taught in high school
geometry.

cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.


No, they aren't the same at all, they only appear to be the same before
they are examined. The two sidebands will not have the correct phase
relationship.

One could, temporarily, mistake the added combination for a full carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb


  #3   Report Post  
Old July 4th 07, 06:16 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on anastronomically-low carrier frequency


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article ,
"Ron
Baker, Pluralitas!" wrote:


snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.


No, they aren't the same at all, they only appear to be the same before
they are examined. The two sidebands will not have the correct phase
relationship.


What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb




  #4   Report Post  
Old July 4th 07, 11:19 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 286
Default AM electromagnetic waves: 20 KHz modulation frequency onanastronomically-low carrier frequency

On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article ,
"Ron
Baker, Pluralitas!" wrote:


snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.


No, they aren't the same at all, they only appear to be the same before
they are examined. The two sidebands will not have the correct phase
relationship.


What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is modulated
onto a carrier via a non-linear process), at an envelope detector the two
sidebands will be additive. But if you independe ntly place a carrier at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+ 1
kHz), the composite can look like an AM signal, but it is not, and only by
the most extreme luck will the sidebands be additive at the detector. They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.

  #5   Report Post  
Old July 5th 07, 12:53 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 89
Default AM electromagnetic waves: 20 KHz modulation frequency on anastronomically-low carrier frequency




When AM is correctly accomplished (a single voiceband signal is modulated
onto a carrier via a non-linear process), at an envelope detector the two
sidebands will be additive. But if you independe ntly place a carrier at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+
1 kHz), the composite can look like an AM signal, but it is not, and only
by
the most extreme luck will the sidebands be additive at the detector.
They would probably cycle between additive and subtractive since they have
no real relationship and were not the result of amplitude modulation.


A peak detector is best understood in the time domain, try to create a
simple description in the frequency domain and you can only cause confusion
and incorrect conclusions.





  #6   Report Post  
Old July 5th 07, 04:42 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency onanastronomically-low carrier frequency


"Don Bowey" wrote in message
...
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article ,
"Ron
Baker, Pluralitas!" wrote:


snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

No, they aren't the same at all, they only appear to be the same before
they are examined. The two sidebands will not have the correct phase
relationship.


What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is modulated


The questions I posed were not about AM. The
subject could have been viewed as DSB but that
wasn't the specific intent either.

onto a carrier via a non-linear process), at an envelope detector the two
sidebands will be additive. But if you independe ntly place a carrier at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+
1
kHz), the composite can look like an AM signal, but it is not, and only by
the most extreme luck will the sidebands be additive at the detector.
They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.



  #7   Report Post  
Old July 6th 07, 10:35 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: Jul 2006
Posts: 286
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency

On 7/4/07 8:42 PM, in article , "Ron
Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article ,
"Ron
Baker, Pluralitas!" wrote:

snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

No, they aren't the same at all, they only appear to be the same before
they are examined. The two sidebands will not have the correct phase
relationship.

What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is modulated


The questions I posed were not about AM. The
subject could have been viewed as DSB but that
wasn't the specific intent either.


You should take some time to more carefully frame your questions.

Do you understand that a DSB signal *is* AM?

Post your intention; it might help.


onto a carrier via a non-linear process), at an envelope detector the two
sidebands will be additive. But if you independe ntly place a carrier at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at (c+
1
kHz), the composite can look like an AM signal, but it is not, and only by
the most extreme luck will the sidebands be additive at the detector.
They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.




  #8   Report Post  
Old July 8th 07, 05:17 AM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequencyonanastronomically-low carrier frequency


"Don Bowey" wrote in message
...
On 7/4/07 8:42 PM, in article ,
"Ron
Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 10:16 AM, in article ,
"Ron Baker, Pluralitas!" wrote:


"Don Bowey" wrote in message
...
On 7/4/07 7:52 AM, in article
,
"Ron
Baker, Pluralitas!" wrote:

snip


cos(a) * cos(b) = 0.5 * (cos[a+b] + cos[a-b])

Basically: multiplying two sine waves is
the same as adding the (half amplitude)
sum and difference frequencies.

No, they aren't the same at all, they only appear to be the same
before
they are examined. The two sidebands will not have the correct phase
relationship.

What do you mean? What is the "correct"
relationship?


One could, temporarily, mistake the added combination for a full
carrier
with independent sidebands, however.




(For sines it is
sin(a) * sin(b) = 0.5 * (cos[a-b]-cos[a+b])
= 0.5 * (sin[a-b+90degrees] - sin[a+b+90degrees])
= 0.5 * (sin[a-b+90degrees] + sin[a+b-90degrees])
)

--
rb





When AM is correctly accomplished (a single voiceband signal is
modulated


The questions I posed were not about AM. The
subject could have been viewed as DSB but that
wasn't the specific intent either.


You should take some time to more carefully frame your questions.

Do you understand that a DSB signal *is* AM?


So all the AM broadcasters are wasting money by
generating a carrier?


Post your intention; it might help.


onto a carrier via a non-linear process), at an envelope detector the
two
sidebands will be additive. But if you independe ntly place a carrier
at
frequency ( c ), another carrier at ( c-1 khz) and another carrier at
(c+
1
kHz), the composite can look like an AM signal, but it is not, and only
by
the most extreme luck will the sidebands be additive at the detector.
They
would probably cycle between additive and subtractive since they have no
real relationship and were not the result of amplitude modulation.






  #9   Report Post  
Old July 4th 07, 05:11 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
isw isw is offline
external usenet poster
 
First recorded activity by RadioBanter: Jul 2007
Posts: 68
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency

In article ,
"Ron Baker, Pluralitas!" wrote:

"Keith Dysart" wrote in message
ps.com...
On Jul 3, 2:07 pm, Keith Dysart wrote:
On Jul 3, 12:50 pm, John Fields wrote:





On Mon, 2 Jul 2007 23:03:36 -0700, "Ron Baker, Pluralitas!"

wrote:

"John Smith I" wrote in message
...
Radium wrote:

snip

Suppose you have a 1 MHz sine wave whose amplitude
is multiplied by a 0.1 MHz sine wave.
What would it look like on an oscilloscope?

snip

What would it look like on a spectrum analyzer?

| |
| | | |
--------+--------------------+-------+------+----
100kHz 0.9MHz 1MHz 1.1MHz

Then suppose you have a 1.1 MHz sine wave added
to a 0.9 MHz sine wave.
What would that look like on an oscilloscope?

snip

Tricky!!!

It looks like AM but it isn't, it's just the phases sliding past
each other slowly and algebraically adding which creates the
illusion.

What would that look like on a spectrum analyzer?

| |
| |
-----------------------------+--------------+----
0.9MHz 1.1MHz

--
JF

But if you remove the half volt bias you put on the
100 kHz signal in the multiplier version, the results
look exactly like the summed version, so I suggest
that results are the same when a 4 quadrant multiplier
is used.

And since the original request was for a "1 MHz sine
wave whose amplitude is multiplied by a 0.1 MHz sine
wave" I think a 4 quadrant multiplier is in order.

...Keith-


Ooops. I misspoke. They are not quite the same.

The spectrum is the same, but if you want to get exactly
the same result, the lower frequency needs a 90 degree
offset and the upper frequency needs a -90 degree offset.

And the amplitudes of the the sum and difference
frequencies need to be one half of the amplitude of
the frequencies being multiplied.

...Keith


You win.

When I conceived the problem I was thinking
cosines actually. In which case there are no
phase shifts to worry about in the result.

I also forgot the half amplitude factor.

While it might not be obvious, the two cases I
described are basically identical. And this
situation occurs in real life, i.e. in radio signals,
oceanography, and guitar tuning.


The beat you hear during guitar tuning is not modulation; there is no
non-linear process involved (i.e. no multiplication).

Isaac
  #10   Report Post  
Old July 4th 07, 06:39 PM posted to sci.electronics.basics,rec.radio.shortwave,rec.radio.amateur.antenna,alt.cellular.cingular,alt.internet.wireless
external usenet poster
 
First recorded activity by RadioBanter: May 2007
Posts: 92
Default AM electromagnetic waves: 20 KHz modulation frequency on an astronomically-low carrier frequency


"isw" wrote in message
...
In article ,
"Ron Baker, Pluralitas!" wrote:

"Keith Dysart" wrote in message
ps.com...
On Jul 3, 2:07 pm, Keith Dysart wrote:
On Jul 3, 12:50 pm, John Fields wrote:





On Mon, 2 Jul 2007 23:03:36 -0700, "Ron Baker, Pluralitas!"

wrote:

"John Smith I" wrote in message
...
Radium wrote:

snip

Suppose you have a 1 MHz sine wave whose amplitude
is multiplied by a 0.1 MHz sine wave.
What would it look like on an oscilloscope?

snip

What would it look like on a spectrum analyzer?

| |
| | | |
--------+--------------------+-------+------+----
100kHz 0.9MHz 1MHz 1.1MHz

Then suppose you have a 1.1 MHz sine wave added
to a 0.9 MHz sine wave.
What would that look like on an oscilloscope?

snip

Tricky!!!

It looks like AM but it isn't, it's just the phases sliding past
each other slowly and algebraically adding which creates the
illusion.

What would that look like on a spectrum analyzer?

| |
| |
-----------------------------+--------------+----
0.9MHz 1.1MHz

--
JF

But if you remove the half volt bias you put on the
100 kHz signal in the multiplier version, the results
look exactly like the summed version, so I suggest
that results are the same when a 4 quadrant multiplier
is used.

And since the original request was for a "1 MHz sine
wave whose amplitude is multiplied by a 0.1 MHz sine
wave" I think a 4 quadrant multiplier is in order.

...Keith-

Ooops. I misspoke. They are not quite the same.

The spectrum is the same, but if you want to get exactly
the same result, the lower frequency needs a 90 degree
offset and the upper frequency needs a -90 degree offset.

And the amplitudes of the the sum and difference
frequencies need to be one half of the amplitude of
the frequencies being multiplied.

...Keith


You win.

When I conceived the problem I was thinking
cosines actually. In which case there are no
phase shifts to worry about in the result.

I also forgot the half amplitude factor.

While it might not be obvious, the two cases I
described are basically identical. And this
situation occurs in real life, i.e. in radio signals,
oceanography, and guitar tuning.


The beat you hear during guitar tuning is not modulation; there is no
non-linear process involved (i.e. no multiplication).

Isaac


In short, the human auditory system is not linear.
It has a finite resolution bandwidth. It can't resolve
two tones separted by a few Hertz as two separate tones.
(But if they are separted by 100 Hz they can easily
be separated without hearing a beat.)

The same affect can be seen on a spectrum analyzer.
Give it two frequencies separated by 1 Hz. Set the
resolution bandwidth to 10 Hz. You'll see the peak
rise and fall at 1 Hz.




Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Antenna 39 July 3rd 07 05:52 AM
AM electromagnetic waves: astronomically-high modulation frequency on an astronomically-low carrier frequency Radium[_2_] Shortwave 17 July 3rd 07 05:37 AM
DC waves??? Magic frequency??? Peter O. Brackett Antenna 19 May 24th 07 10:07 PM
Electromagnetic frequency allocations in xml ? [email protected] General 0 December 10th 05 05:47 PM
Which digital readout receivers always show the carrier frequency no matter what mode? Richard Shortwave 5 December 5th 04 12:14 AM


All times are GMT +1. The time now is 12:29 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017