LinkBack Thread Tools Search this Thread Display Modes
Prev Previous Post   Next Post Next
  #16   Report Post  
Old November 28th 04, 09:00 PM
Cecil Moore
 
Posts: n/a
Default

Cecil Moore wrote:
The formula for theoretical TOTAL losses in a *resonant* stub:

Total loss = 10*log{[(Z0-R)/(Z0+R)]^2}

where R is the measured resistance of the resonant stub and Z0
is the characteristic impedance of the stub material. You can
see the [(Z0-R)/(Z0+R)]^2 term is akin to a virtual rho^2 at
the mouth of the stub. Since rho^2 = Pref/Pfor, the losses in
the stub are equivalent to the losses in an equivalent resistance
equal to the measured virtual resistance at the mouth of the stub.


In other words, replace the stub with a resistor having the same
value of measured resistance as the stub, and calculate the I^2*R
losses in the resistor. That will be the same value as the total
losses in the stub.
--
73, Cecil http://www.qsl.net/w5dxp
 
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Current in antenna loading coils controversy - new measurement Yuri Blanarovich Antenna 69 December 5th 03 02:11 PM
Complex line Z0: A numerical example Roy Lewallen Antenna 11 September 13th 03 01:04 AM
A Subtle Detail of Reflection Coefficients (but important to know) Dr. Slick Antenna 199 September 12th 03 10:06 PM
Re-Normalizing the Smith Chart (Changing the SWR into the same load) Dr. Slick Antenna 98 August 30th 03 03:09 AM


All times are GMT +1. The time now is 11:30 AM.

Powered by vBulletin® Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 RadioBanter.
The comments are property of their posters.
 

About Us

"It's about Radio"

 

Copyright © 2017